Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weiliang Jiang is active.

Publication


Featured researches published by Weiliang Jiang.


Oncotarget | 2016

MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4

Dantong Cheng; Senlin Zhao; Huamei Tang; Dongyuan Zhang; Hongcheng Sun; Fudong Yu; Weiliang Jiang; Ben Yue; Jingtao Wang; Meng Zhang; Yang Yu; Xisheng Liu; Xiao-Feng Sun; Zong-Guang Zhou; Xuebin Qin; Xin Zhang; Dongwang Yan; Yugang Wen; Zhihai Peng

Background Tumor metastasis is one of the leading causes of poor prognosis for colorectal cancer (CRC) patients. Loss of Smad4 contributes to aggression process in many human cancers. However, the underlying precise mechanism of aberrant Smad4 expression in CRC development is still little known. Results miR-20a-5p negatively regulated Smad4 by directly targeting its 3′UTR in human colorectal cancer cells. miR-20a-5p not only promoted CRC cells aggression capacity in vitro and liver metastasis in vivo, but also promoted the epithelial-to-mesenchymal transition process by downregulating Smad4 expression. In addition, tissue microarray analysis obtained from 544 CRC patients’ clinical characters showed that miR-20a-5p was upregulated in human CRC tissues, especially in the tissues with metastasis. High level of miR-20a-5p predicted poor prognosis in CRC patients. Methods Five miRNA target prediction programs were applied to identify potential miRNA(s) that target(s) Smad4 in CRC. Luciferase reporter assay and transfection technique were used to validate the correlation between miR-20a-5p and Smad4 in CRC. Wound healing, transwell and tumorigenesis assays were used to explore the function of miR-20a-5p and Smad4 in CRC progression in vitro and in vivo. The association between miR-20a-5p expression and the prognosis of CRC patients was evaluated by Kaplan–Meier analysis and multivariate cox proportional hazard analyses based on tissue microarray data. Conclusions miR-20a-5p, as an onco-miRNA, promoted the invasion and metastasis ability by suppressing Smad4 expression in CRC cells, and high miR-20a-5p predicted poor prognosis for CRC patients, providing a novel and promising therapeutic target in human colorectal cancer.


Cancer Letters | 2016

The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway.

Weiliang Jiang; Senlin Zhao; Xiaohua Jiang; Erquan Zhang; Guoyong Hu; Bin Hu; Ping Zheng; Junhua Xiao; Zhanjun Lu; Yingying Lu; Jianbo Ni; C.J. Chen; Xingpeng Wang; Lijuan Yang; Rong Wan

Disruption of the circadian clock has been shown to be associated with tumor development. This study aimed to investigate the role of the core circadian gene Bmal1 in pancreatic cancer (PC). We first found that the levels of Bmal1 were downregulated in PC samples and were closely correlated with the clinicopathological features of patients. To dissect the underlying mechanism, we performed a RNA-seq assay followed by systematic gene function and pathway enrichment analyses. We detected an anti-apoptotic and pro-proliferative transcriptome profile after Bmal1 knockdown in PC cells. Further in vitro and in vivo studies confirmed that Bmal1 overexpression significantly inhibited cell proliferation and invasion and induced G2/M cell cycle arrest, whereas Bmal1 knockdown promoted PC growth, as demonstrated in Bmal1-manipulated AsPC-1 and BxPC-3 cell lines. Our mechanistic studies indicated that Bmal1 could directly bind to the p53 gene promoter and thereby transcriptionally activate the downstream tumor suppressor pathway in a p53-dependent manner. In sum, our findings suggest that Bmal1 acts as an anti-oncogene in PC and represents a potential biomarker for its diagnosis.


Journal of Experimental & Clinical Cancer Research | 2016

Transcriptional repression of SOCS3 mediated by IL-6/STAT3 signaling via DNMT1 promotes pancreatic cancer growth and metastasis

Li Huang; Bin Hu; Jianbo Ni; Jianghong Wu; Weiliang Jiang; C.J. Chen; Lijuan Yang; Yue Zeng; Rong Wan; Guoyong Hu; Xingpeng Wang

BackgroundPrevious studies have investigated the sustained aberrantly activated Interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway is crucial for pancreatic cancer growth and metastasis. Suppressor of cytokine signaling 3 (SOCS3), as a key negative feedback regulator of this signaling pathway, is usually down-regulated in various cancers. In the present study, we aim at exploring the biological function and the underlying molecular regulation mechanisms of SOCS3 in pancreatic cancer.MethodsThe expression of SOCS3 and other genes in pancreatic cancer was examined by Quantitative real-time PCR, western blotting and immunohistochemical staining. The interaction between pSTAT3 and DNA Methyltransferase 1 (DNMT1) was investigated by co-immunoprecipitation assay. Luciferase reporter assay was used to investigate the transcriptional regulation of pSTAT3 and DNMT1 on the SOCS3 gene. The effects of SOCS3 on the biological behavior of pancreatic cancer cells were assessed both in vitro and vivo. Furthermore, we performed a comprehensive analysis of the expression of SOCS3 in a pancreatic cancer tissue microarray (TMA) and correlated our findings with pathological parameters and outcomes of the patients.ResultsWe showed that SOCS3 expression was decreased in phosphorylated STAT3 (pSTAT3)-positive tumors and was negatively correlated with pSTAT3 in pancreatic cancer cells. We also found that IL-6/STAT3 promoted SOCS3 promoter hypermethylation by increasing DNMT1 activity; silencing DNMT1 or 5-aza-2-deoxycytidine (5-AZA) treatment could reverse the down-regulation of SOCS3 mediated by IL-6. Using co-immunoprecipitation and luciferase reporter assays, we found that STAT3 recruited DNMT1 to the promoter region of SOCS3 and inhibited its transcriptional activity. Overexpression of SOCS3 significantly inhibited cell proliferation, which may be due to the increase in G1-S phase arrest; overexpression of SOCS3 also inhibited cell migration and invasion as well as tumorigenicity in nude mice. Pancreatic cancer tissue microarray analysis showed that high SOCS3 expression was a good prognostic factor and negatively correlated with tumor volume and metastasis.ConclusionWe demonstrated that activated IL-6/STAT3 signaling could induce SOCS3 methylation via DNMT1, which led to pancreatic cancer growth and metastasis. These data also provided a mechanistic link between sustained aberrantly activated IL-6/STAT3 signaling and SOCS3 down-regulation in pancreatic cancer. Thus, inhibitors of STAT3 or DNMT1 may become novel strategies for treating pancreatic cancer.


Cancer Letters | 2016

HIC1 attenuates invasion and metastasis by inhibiting the IL-6/STAT3 signalling pathway in human pancreatic cancer

Bin Hu; Kundong Zhang; Shaobo Li; Hao Li; Zhaowen Yan; Li Huang; Jianghong Wu; Xiao Han; Weiliang Jiang; Tunike Mulatibieke; Lin Zheng; Rong Wan; Xingpeng Wang; Guoyong Hu

Hypermethylated in cancer 1 (HIC1) is a tumour suppressor gene that is frequently deleted or epigenetically silenced in many human cancers. However, the molecular function of HIC1 in pancreatic cancer has not been fully elucidated, especially in cancer invasion and metastasis. We aimed to clarify the clinical relevance of HIC1 and human pancreatic cancer and the mechanism of its effect on invasion and metastasis .HIC1 was downregulated in pancreatic cancer patient cancer tissue and pancreatic cancer cell lines. A tissue microarray analysis demonstrated that negative HIC1 expression predicted advanced pathological stages and worse patient survival. In addition, HIC1 inhibited the invasion and metastasis of pancreatic cancer cells both in vitro and in vivo. Finally, HIC1 repressed the expression of STAT3 target genes, including c-Myc, VEGF, CyclinD1, MMP2 and MMP9, by binding and interacting with STAT3 to impede its DNA-binding ability but without affecting the protein levels of STAT3 and p-STAT3. Therefore, HIC1 appears to function as a STAT3 inhibitor and may be a promising target for cancer research and for the development of an optimal treatment approach for pancreatic cancer.


PLOS ONE | 2015

Retinoic Acid Ameliorates Pancreatic Fibrosis and Inhibits the Activation of Pancreatic Stellate Cells in Mice with Experimental Chronic Pancreatitis via Suppressing the Wnt/β-Catenin Signaling Pathway

Wenqin Xiao; Weiliang Jiang; Jie Shen; Guojian Yin; Yuting Fan; Deqing Wu; Lei Qiu; Ge Yu; Miao Xing; Guoyong Hu; Xingpeng Wang; Rong Wan

Pancreatic fibrosis, a prominent feature of chronic pancreatitis (CP), induces persistent and permanent damage in the pancreas. Pancreatic stellate cells (PSCs) provide a major source of extracellular matrix (ECM) deposition during pancreatic injury, and persistent activation of PSCs plays a vital role in the progression of pancreatic fibrosis. Retinoic acid (RA), a retinoid, has a broad range of biological functions, including regulation of cell differentiation and proliferation, attenuating progressive fibrosis of multiple organs. In the present study, we investigated the effects of RA on fibrosis in experimental CP and cultured PSCs. CP was induced in mice by repetitive cerulein injection in vivo, and mouse PSCs were isolated and activated in vitro. Suppression of pancreatic fibrosis upon administration of RA was confirmed based on reduction of histological damage, α-smooth muscle actin (α-SMA) expression and mRNA levels of β-catenin, platelet-derived growth factor (PDGF)-Rβ transforming growth factor (TGF)-βRII and collagen 1α1 in vivo. Wnt 2 and β-catenin protein levels were markedly down-regulated, while Axin 2 expression level was up-regulated in the presence of RA, both in vivo and in vitro. Nuclear translation of β-catenin was significantly decreased following RA treatment, compared with cerulein-induced CP in mice and activated PSCs. Furthermore, RA induced significant PSC apoptosis, inhibited proliferation, suppressed TCF/LEF-dependent transcriptional activity and ECM production of PSC via down-regulation of TGFβRII, PDGFRβ and collagen 1α1 in vitro. These results indicate a critical role of the Wnt/β-catenin signaling pathway in RA-induced effects on CP and PSC regulation and support the potential of RA as a suppressor of pancreatic fibrosis in mice.


World Journal of Gastroenterology | 2017

MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression

Zhanjun Lu; Jian-Jiong Wu; Weiliang Jiang; Junhua Xiao; Kai-Zhong Tao; Lei Ma; Ping Zheng; Rong Wan; Xingpeng Wang

AIM To explore the mechanism by which microRNA-155 (miR-155) regulates the pathogenesis of experimental colitis. METHODS A luciferase assay was performed to confirm the binding of miR-155 to the SHIP-1 3’-UTR. MiR-155 mimics, negative controls and SHIP-1 expression/knockdown vectors were established and then utilized in gain- and loss-of-function studies performed in raw264.7 cells and primary bone marrow-derived macrophages (BMDMs). Thereafter, dextran sulfate sodium (DSS)-induced colitis mouse model with or without antagomiR-155 treatment was established, and the levels of miR-155 and SHIP-1, as well as the pro-inflammatory capabilities, were measured by western blot, quantitative polymerase chain reaction, and immunohistochemistry. RESULTS MiR-155 directly bound to the 3’-UTR of SHIP-1 mRNA and induced a significant decrease in SHIP-1 expression in both raw264.7 cells and primary BMDMs. MiR-155 markedly promoted cell proliferation and pro-inflammatory secretions including IL-6, TNF-α, IL-1β, and IFN-γ, whereas these effects could be reversed by the restoration of SHIP-1 expression. In vivo studies showed that antagomiR-155 administration could alleviate DSS-induced intestinal inflammation in Balb/c mice. Moreover, significantly increased SHIP-1 expression, as well as decreased Akt activation and inflammatory response, were observed in the antagomiR-155-treated mice. CONCLUSION MiR-155 promotes experimental colitis by repressing SHIP-1 expression. Thus, the inhibition of miR-155 might be a promising strategy for therapy.


Journal of Gastroenterology and Hepatology | 2015

Ubiquitin D is an independent prognostic marker for survival in stage IIB-IIC colon cancer patients treated with 5-fluoruracil-based adjuvant chemotherapy.

Senlin Zhao; Tao Jiang; Huamei Tang; Feifei Cui; Chenchen Liu; Feng Guo; Huijun Lu; Yingming Xue; Weiliang Jiang; Zhihai Peng; Dongwang Yan

Postoperative 5‐fluoruracil (5‐FU)‐based adjuvant chemotherapy is recommended for stage II colon cancer patients with high conventional risk factors; however, some of these patients still experience tumor recurrence. Identifying novel biomarkers to distinguish the risk of tumor recurrence after surgery is vital for improving their prognoses. We previously showed that ubiquitin D (UBD) can predict the prognosis of colon cancer; however, there are limited data on whether UBD is an independent prognostic factor for stage II patients treated with 5‐FU‐based adjuvant chemotherapy.


Molecular Cancer | 2017

miR-4775 promotes colorectal cancer invasion and metastasis via the Smad7/TGFβ-mediated epithelial to mesenchymal transition

Senlin Zhao; Hongcheng Sun; Weiliang Jiang; Yushuai Mi; Dongyuan Zhang; Yugang Wen; Dantong Cheng; Huamei Tang; Shaohan Wu; Yang Yu; Xisheng Liu; Weiyingqi Cui; Meng Zhang; Xiao-Feng Sun; Zong-Guang Zhou; Zhihai Peng; Dongwang Yan

BackgroundDespite advancements in the diagnosis and treatment of colorectal cancer (CRC), many patients die because of tumor metastasis or recurrence. Therefore, identifying new prognostic markers and elucidating the mechanisms of CRC metastasis and recurrence will help to improve the prognosis of the disease. As dysregulation of microRNAs is strongly related to cancer progression, the aim of this study was to identify the role of miR-4775 in the prognosis of CRC patients and the underling mechanisms involved in CRC progression.MethodsqPCR and in situ hybridization were used to evaluate the expression of miR-4775 in 544 pairs of paraffin-embedded normal and CRC tissues. Kaplan–Meier analysis with the log-rank test was used for survival analyses. Immunohistochemical staining was applied to investigate the expression of miR-4775-regulated Smad7/TGFβ pathway-associated markers. In vitro and in vivo invasion and metastasis assays were used to explore the function of miR-4775 in the progression of CRC.ResultsmiR-4775 was identified as a high-risk factor for CRC metastasis and recurrence, with high levels predicting poor survival among the 544 studied CRC patients. Furthermore, high miR-4775 expression promoted the invasion of CRC cells as well as metastasis and the epithelial to mesenchymal transition (EMT) via Smad7-mediated activation of TGFβ signaling both in vitro and in vivo. Downregulating miR-4775 or overexpressing Smad7 reversed the tumor-promoting roles of miR-4775/Smad7/TGFβ in vitro and in vivo.ConclusionmiR-4775 promotes CRC metastasis and recurrence in a Smad7/TGFβ signaling-dependent manner, providing a new therapeutic target for inhibiting the metastasis or recurrence of the disease.


Biomedicine & Pharmacotherapy | 2015

The inhibitory effects of xanthohumol, a prenylated chalcone derived from hops, on cell growth and tumorigenesis in human pancreatic cancer.

Weiliang Jiang; Senlin Zhao; Ling Xu; Yingying Lu; Zhanjun Lu; C.J. Chen; Jianbo Ni; Rong Wan; Lijuan Yang

Pancreatic cancer (PC) is one of the most lethal human malignancies worldwide. Here, we demonstrated that xanthohumol (XN), the most abundant prenylated chalcone isolated from hops, inhibited the growth of cultured PC cells and their subcutaneous xenograft tumors. XN treatment was found to induce cell cycle arrest and apoptosis of PC cells (PANC-1, BxPC-3) by inhibiting phosphorylation of signal transducer and activator of transcription 3 (STAT3) and expression of its downstream targeted genes cyclinD1, survivin, and Bcl-xL at the messenger RNA level, which involved in regulation of apoptosis and the cell cycle. Overall, our results suggested that XN presents a promising candidate therapeutic agent against human PC and the STAT3 signaling pathway is its key molecular target.


International Journal of Molecular Medicine | 2016

Effects of ketanserin on experimental colitis in mice and macrophage function

Junhua Xiao; Limei Shao; Jiaqing Shen; Weiliang Jiang; Yun Feng; Ping Zheng; Fei Liu

Ketanserin is a selective 5-hydroxytryptamine (serotonin)-2A receptor (5-HT2AR) antagonist. Studies have suggested that ketanserin exerts anti-inflammatory effects independent of the baroreflex; however, the mechanisms involved remain unclear. Thus, in the present study, we aimed to evaluate the effects of ketanserin in colitis and the possible underlying mechanisms. The expression of 5-HT2AR was assessed in the colon tissues of patients with inflammatory bowel disease (IBD) and in mice with dextran sodium sulfate (DSS)-induced colitis. The therapeutic potential of ketanserin was investigated in the mice with colitis. In the colon tissue samples from the patients with IBD, a high expression level of 5-HT2AR was observed. Treatment with ketanserin attenuated the progression of experimental colitis in the mice, as indicated by body weight assessment, colon length, histological scores and cytokine release. The colonic macrophages from the ketanserin-treated mice with colitis exhibited a decreased production of inflammatory cytokines, with M2 polarization and impaired migration. The knockdown of 5-HT2AR using siRNA partly abolished the inhibitory effects of ketanserin on the release of pro-inflammatory cytokines in bone marrow derived-macrophages (BMDMs), thus demonstrating that the inhibitory effects of ketanserin on the production of inflammatory cytokines are partly dependent on 5-HT2AR. Ketanserin also inhibited the activation of nuclear factor-κB (NF-κB) in BMDMs. In conclusion, the findings of the present study demonstrate that ketanserin alleviates colitis. Its anti-inflammatory effects may be due to the promotion of the anti-inflammatory function of macrophages through 5-HT2AR/NF-κB.

Collaboration


Dive into the Weiliang Jiang's collaboration.

Top Co-Authors

Avatar

Rong Wan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Senlin Zhao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xingpeng Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Guoyong Hu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Huamei Tang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Zhihai Peng

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

C.J. Chen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Dongwang Yan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Dongyuan Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Lijuan Yang

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge