Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weiming Cheng is active.

Publication


Featured researches published by Weiming Cheng.


Journal of remote sensing | 2011

Accuracy assessment of the ASTER GDEM and SRTM3 DEM: an example in the Loess Plateau and North China Plain of China

Shangmin Zhao; Weiming Cheng; Chenghu Zhou; Xi Chen; Shifang Zhang; Zengpo Zhou; Haijiang Liu; Huixia Chai

The digital elevation model (DEM) produced by the Shuttle Radar Topographic Mission (SRTM) has provided important fundamental data for topographic analysis in many fields. The recently released global digital elevation model (GDEM) produced by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has higher spatial resolution and wider coverage than the SRTM3 DEM, and thus may be of more value to researchers. Taking two typical study areas—the Loess Plateau and the North China Plain of China—as an example, this article assesses the accuracy of the SRTM3 DEM and ASTER GDEM by collecting ground control points from topographical maps. It is found that both the SRTM3 DEM and the ASTER GDEM are far more accurate for the North China Plain than for the Loess Plateau. For the Loess Plateau, the accuracy of the ASTER GDEM is similar to that of the SRTM3 DEM; whereas for the North China Plain, it is much worse than that of the SRTM3 DEM. Considering the negative bias of the ASTER GDEM for flat or gentle regions, we improve its accuracy by adding the difference of the mean value between the SRTM3 DEM and ASTER GDEM for the North China Plain; then, the root mean square error (RMSE) of ±7.95 m from the original ASTER GDEM is improved to ±5.26 m, which demonstrates that it is a simple but useful way to improve the accuracy of the ASTER GDEM in flat or gentle regions.


Journal of Geographical Sciences | 2016

Changes in inland lakes on the Tibetan Plateau over the past 40 years

Yue Fang; Weiming Cheng; Yichi Zhang; Nan Wang; Shangmin Zhao; Chenghu Zhou; Xi Chen; Anming Bao

Inland lakes and alpine glaciers are important water resources on the Tibetan Plateau. Understanding their variation is crucial for accurate evaluation and prediction of changes in water supply and for retrieval and analysis of climatic information. Data from previous research on 35 alpine lakes on the Tibetan Plateau were used to investigate changes in lake water level and area. In terms of temporal changes, the area of the 35 alpine lakes could be divided into five groups: rising, falling-rising, rising-falling, fluctuating, and falling. In terms of spatial changes, the area of alpine lakes in the Himalayan Mountains, the Karakoram Mountains, and the Qaidam Basin tended to decrease; the area of lakes in the Naqu region and the Kunlun Mountains increased; and the area of lakes in the Hoh Xil region and Qilian Mountains fluctuated. Changes in lake water level and area were correlated with regional changes in climate. Reasons for changes in these lakes on the Tibetan Plateau were analyzed, including precipitation and evaporation from meteorological data, glacier meltwater from the Chinese glacier inventories. Several key problems, e.g. challenges of monitoring water balance, limitations to glacial area detection, uncertainties in detecting lake water-level variations and variable region boundaries of lake change types on the Tibetan Plateau were discussed. This research has most indicative significance to regional climate change.


Remote Sensing | 2017

GDP Spatialization and Economic Differences in South China Based on NPP-VIIRS Nighttime Light Imagery

Min Zhao; Weiming Cheng; Chenghu Zhou; Manchun Li; Nan Wang; Qiangyi Liu

Accurate data on gross domestic product (GDP) at pixel level are needed to understand the dynamics of regional economies. GDP spatialization is the basis of quantitative analysis on economic diversities of different administrative divisions and areas with different natural or humanistic attributes. Data from the Visible Infrared Imaging Radiometer Suite (VIIRS), carried by the Suomi National Polar-orbiting Partnership (NPP) satellite, are capable of estimating GDP, but few studies have been conducted for mapping GDP at pixel level and further pattern analysis of economic differences in different regions using the VIIRS data. This paper produced a pixel-level (500 m × 500 m) GDP map for South China in 2014 and quantitatively analyzed economic differences among diverse geomorphological types. Based on a regression analysis, the total nighttime light (TNL) of corrected VIIRS data were found to exhibit R2 values of 0.8935 and 0.9243 for prefecture GDP and county GDP, respectively. This demonstrated that TNL showed a more significant capability in reflecting economic status (R2 > 0.88) than other nighttime light indices (R2 < 0.52), and showed quadratic polynomial relationships with GDP rather than simple linear correlations at both prefecture and county levels. The corrected NPP-VIIRS data showed a better fit than the original data, and the estimation at the county level was better than at the prefecture level. The pixel-level GDP map indicated that: (a) economic development in coastal areas was higher than that in inland areas; (b) low altitude plains were the most developed areas, followed by low altitude platforms and low altitude hills; and (c) economic development in middle altitude areas, and low altitude hills and mountains remained to be strengthened.


Journal of Applied Remote Sensing | 2017

Spatial differentiation and morphologic characteristics of China’s urban core zones based on geomorphologic partition

Min Zhao; Weiming Cheng; Chenghu Zhou; Manchun Li; Nan Wang; Qiangyi Liu

Abstract. Based on a previous study that used the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light images to partition different types of night-lit areas within individual cities, 456 urban core zones in China, representing highly developed areas in 2012, were extracted. Then, several morphologic indices were selected for characterizing for each urban core zone, and the spatial differentiation and morphologic characteristics of urban core zones located within different geomorphologic regions in China were quantitatively analyzed. The results showed that urban core zones were most widely distributed in the eastern region comprising hilly plains, with a decreasing distribution trend from northeast to southwest, and the least distribution was in the Tibetan Plateau. The contours of most of these zones appeared to be relatively simple and compact, and evidenced seven shapes. Regions at lower altitudes with flat terrains were more likely to demonstrate a wide range of urban core zones, especially those with complex shapes. This study represents a preliminary effort toward the construction of an interactive coupling mechanism for urban and geomorphologic environments (e.g., altitude, relief of land surface, geomorphologic types, geomorphologic region). Its findings contribute to enhancing understanding of the spatial morphologic characteristics of highly developed areas in China.


Journal of Geographical Sciences | 2016

Spatiotemporal measurement of urbanization levels based on multiscale units: A case study of the Bohai Rim Region in China

Min Zhao; Weiming Cheng; Qiangyi Liu; Nan Wang

Urbanization is a complex process reflecting the growth, formation and development of cities and their systems. Measuring regional urbanization levels within a long time series may ensure healthy and harmonious urban development. Based on DMSP/OLS nighttime light data, a human—computer interactive boundary correction method was used to obtain information about built-up urban areas in the Bohai Rim region from 1992 to 2012. Consequently, a method was proposed and applied to measure urbanization levels using four measurement scale units: administrative division, land-sea location, terrain feature, and geomorphological types. Our conclusions are: 1) The extraction results based on DMSP/OLS nighttime light data showed substantial agreement with those obtained using Landsat TM/ETM+ data on spatial patterns. The overall accuracy was 97.70% on average, with an average Kappa of 0.79, indicating that the results extracted from DMSP/OLS nighttime light data were reliable and could well reflect the actual status of built-up urban areas. 2) Bohai Rim’s urbanization level has increased significantly, demonstrating a high annual growth rate from 1998 to 2006. Areas with high urbanization levels have relocated evidently from capital to coastal cities. 3) The distribution of built-up urban areas showed a certain degree of zonal variation. The urbanization level was negatively correlated with relief amplitude and altitude. A high level of urbanization was found in low altitude platforms and low altitude plains, with a gradual narrowing of the gap between these two geomorphological types. 4) The measurement method presented in this study is fast, convenient, and incorporates multiple perspectives. It would offer various directions for urban construction and provide reference values for measuring national-level urbanization.


Journal of Arid Land | 2013

Climate effects on an inland alpine lake in Xinjiang, China over the past 40 years

Huixia Chai; Weiming Cheng; Chenghu Zhou; Shangmin Zhao; Haijiang Liu

Inland lakes are important water resources in arid and semiarid regions. Understanding climate effects on these lakes is critical to accurately evaluate the dynamic changes of water resources. This study focused on the changes in Sayram Lake of Xinjiang, China, and addressed the effects of climate fluctuations on the inland lake based on long-term sequenced remote sensing images and meteorological data from the past 40 years. A geographic information system (GIS) method was used to obtain the hypsometry of the basin area of Sayram Lake, and estimation methods for evaporation from rising temperature and water levels from increasing precipitation were proposed. Results showed that: (1) Areal values of Sayram Lake have increased over the past 40 years. (2) Both temperature and precipitation have increased with average increases of more than 1.8°C and 82 mm, respectively. Variation of the water levels in the lake was consistent with local climate changes, and the areal values show linear relationships with local temperature and precipitation data. (3) According to the hypsometry data of the basin area, the estimated lake water levels increased by 2.8 m, and the water volume increased by 12.9×108 m3 over the past 40 years. The increasing area of Sayram Lake correlated with local and regional climatic changes because it is hardly affected by human activities.


Remote Sensing | 2018

Assessing Spatiotemporal Characteristics of Urbanization Dynamics in Southeast Asia Using Time Series of DMSP/OLS Nighttime Light Data

Min Zhao; Weiming Cheng; Chenghu Zhou; Manchun Li; Kun Huang; Nan Wang

Intraregional spatial variations of satellite-derived anthropogenic nighttime light signals are gradually applied to identify different lighting areas with various socioeconomic activity and urbanization levels when characterizing urbanization dynamics. However, most previous partitioning approaches are carried out at local scales, easily leading to multi-standards of the extracted results from local areas, and this inevitably hinders the comparative analysis on the urbanization dynamics of the large region. Therefore, a partitioning approach considering the characteristics of nighttime light signals at both local and regional scales is necessary for studying spatiotemporal characteristics of urbanization dynamics across the large region using nighttime light imagery. Based on the quadratic relationships between the pixel-level nighttime light brightness and the corresponding spatial gradient for individual cities, we here proposed an improved partitioning approach to quickly identify different types of nighttime lighting areas for the entire region of Southeast Asia. Using the calibrated Defense Meteorological Satellite Program/Operational Line-scan System (DMSP/OLS) data with greater comparability, continuity, and intra-urban variability, the annual nighttime light imagery spanning years 1992–2013 were divided into four types of nighttime lighting areas: low, medium, high, and extremely high, associated with different intensity of anthropogenic activity. The results suggest that Southeast Asia has experienced a rapid and diverse urbanization process from 1992 to 2013. Areas with moderate or low anthropogenic activity show a faster growth rate for the spatial expansion than the developed areas with intense anthropogenic activity. Transitions between different nighttime lighting types potentially depict the trajectory of urban development, the darker areas are gradually transitioning to areas with higher lighting, indicating conspicuous trends of gradually intensified anthropogenic activity from central areas to periphery areas, and from megacities to small cities. Additionally, satellite-derived nighttime lighting areas are in good agreement with the radar-derived human settlements, with dense human settlements in extremely high and high nighttime lighting areas, while sparse human settlements in low nighttime lighting areas.


Journal of Arid Land | 2016

Growth of the Sayram Lake and retreat of its water-supplying glaciers in the Tianshan Mountains from 1972 to 2011

Weiming Cheng; Nan Wang; Shangmin Zhao; Yue Fang; Min Zhao

Inland lakes and alpine glaciers are important constituents of water resources in arid and semiarid regions. Understanding their variations is critical for both an accurate evaluation of the dynamic changes of water resources and the retrieval of climatic information. On the basis of earlier researches, this study investigated the growth of the Sayram Lake and the retreat of its water-supplying glaciers in the Tianshan Mountains using long-term sequenced remote sensing images. Our results show that over the past 40 years, the surface area and the water level of the lake has increased by 12.0±0.3 km2 and 2.8 m, respectively, and the area of its water-supplying glaciers has decreased continuously since the early 1970s with a total reduction of about–2.13±0.03 km2. Our study has indicative significance to the research of regional climate change.


Journal of Mountain Science | 2013

Topographic Characteristics for the Geomorphologic Zones in the Northwestern Edge of the Qinghai-Tibet Plateau

Weiming Cheng; Shangmin Zhao; Chenghu Zhou; Xi Chen

Based on geomorphologic and digital elevation model (DEM) data, the topographic characteristics of the northwestern edge of the Qinghai-Tibet Plateau are analyzed. Five representative peaks are first determined according to the topographic profile maps for the ridge and piedmont lines, and then the topographic gradient characteristics are analyzed according to the representative topographic profile acquisition method. Based on the geomorphologic database data, the regions between the ridge and the piedmont lines are divided into four geomorphologic zones; and the topographic characteristics are finally analyzed for the different geomorphologic zones regions using the DEM data. The research results show that from the piedmont to the ridge, there exist four geomorphologic zones: arid, fluvial, periglacial and glacial. The arid has the lowest elevation, topographic gradient, relief and slope characteristics. The fluvial has lower elevation and the highest topographic gradient, but with lower relief and slope characteristics. With higher elevation, the periglcial has lower topographic gradient, but the highest relief and slope characteristics. The glacial has the highest elevation with higher topographic gradient, relief and slope characteristics.


PeerJ | 2018

Hydrologic application comparison among typical open global DEM data based on remote sensing images

Shangmin Zhao; Shifang Zhang; Weiming Cheng

As the data source in digital topographic analysis, digital elevation model (DEM) data plays an important role in many fields, and hydrologic application is an important one among them. The successive release of open global DEM datasets provides multi choices for these applications, but also brings puzzles in DEM data selection. Taking Fenhe River Basin of China as the study area, this research compared the hydrologic networks extracted by typical global DEM data using matching difference (MD), correctness (C) and figure of merit (FM) indexes. Firstly, four DEM-derived hydrologic networks (DHNs) were acquired through topographic analysis using four typical global DEM datasets, including Shuttle Radar Terrain Mission (SRTM) data with 1 arc second resolution (SRTM1), SRTM data with 3 arc second resolution (SRTM3), ASTER global DEM data in the second version (GDEM-v2) and ALOS world 3D-30m (AW3D30) data. Then, the reference hydrologic network (RHN) was interpreted based on remote sensing images. Finally, the DHNs were evaluated and compared by referencing the RHN using different indexes. Research results show: (1) four DHNs have similar distribution in mountain regions but much different performance in flat regions; (2) all the indexes (including MD, C and FM) indicate that about the quality of the DHNs, the best is the AW3D30 data, then the SRTM1 data, the next is the SRTM3 data, and the GDEM-v2 data has the worst quality; (3) through analyzing the MD distribution in different slope classes for the four global DEM datasets, the MD mainly distributes in flat region, and then sloping region, but seldom in steep region. Overall, AW3D30 has the best quality, a little better than SRTM1 and much better than SRTM3 and GDEM-v2; SRTM3 and GDEM-v2 data have much worse quality, and GDEM-v2 data is the worst in the four global DEM datasets. Considering that the AW3D30 data is originated from the DEM dataset with 5m resolution, it may exerts more effect in future digital topographic analysis.

Collaboration


Dive into the Weiming Cheng's collaboration.

Top Co-Authors

Avatar

Chenghu Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shangmin Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huixia Chai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Nan Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Min Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xi Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiangyi Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shifang Zhang

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Geping Luo

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge