Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weina Liu is active.

Publication


Featured researches published by Weina Liu.


Behavioural Brain Research | 2013

Swimming exercise ameliorates depression-like behavior in chronically stressed rats: Relevant to proinflammatory cytokines and IDO activation

Weina Liu; Hui Sheng; Yongjun Xu; Yu Liu; Jianqiang Lu; Xin Ni

Chronic stress is involved in development of depression and causes immune alterations. Indoleamine-2,3-dioxygenase (IDO) plays a pivotal role in mediating the depression-like behaviors in response to immune activation. Physical exercise has been shown to reduce the stress impairment and ameliorate depressive symptoms. The objectives of present study were to confirm that chronic unpredictable mild stress (CUMS) induces depression-like behavior and inflammatory responses within the brain, and then investigate whether swimming exercise alleviates the depression-like behaviors induced by CUMS through proinflammatory cytokine-induced alteration of IDO in brain. It has been found that CUMS exposure induced depression-like behavior, increased serum corticosterone (CORT) level, decreased 5-HT level, increased IFN-γ and TNF-α levels and elevated IDO activity in prefrontal cortex. Moreover, the level of 5-HT was inversely correlated with IDO level. Regular swimming exercise ameliorated depressive symptoms induced by CUMS. The exercise reduced serum CORT level, increased 5-HT level as well as decreased levels of IFN-γ, TNF-α and IDO in prefrontal cortex in CUMS rats. These findings suggested that CUMS activate HPA axis and induce immune activation, which may stimulate IDO activity, leading to the reduction of 5-HT level in brain, thereby resulting in depression. Swimming exercise may inhibit activation of inflammation/IDO pathways induced by CUMS, thereby ameliorating depression.


Psychoneuroendocrinology | 2012

Corticosterone reduces brain mitochondrial function and expression of mitofusin, BDNF in depression-like rodents regardless of exercise preconditioning

Weina Liu; Chenglin Zhou

Both chronic mild stress and an injection of corticosterone induce depression-like states in rodents. To further link mitochondrial dysfunction to the pathophysiology of major depression, here we describe two rat models of a depressive-like state induced by chronic unpredictable mild stress (CUMS) or corticosterone treatment (CORT). It is also a model that allows the simultaneous study of effects of exercise preconditioning on behavioral, electrophysiological, biochemical and molecular markers in the same animal. Exercise preconditioning ahead of CUMS and CORT treatment prevents many behavioral abnormalities resulted from CUMS. The changes in mitochondrial activity in brain and reduced expressions of superoxide dismutase (SOD1, SOD2), mitofusin (Mfn1, Mfn2) as well as brain-derived neurotrophic factor (BDNF) suggest that both CORT and CUMS may impair mitochondrial function and/or expressions of mitofusion and antioxidant enzymes that, in turn, may increase oxidative stress and reduce energy production in brain with depression-like behaviors. These findings suggest an underlying mechanism by which CORT, as well as CUMS, induces brain mitochondrial dysfunction that is associated with depressive-like states. Remarkably, physical exercise is identified as a helpful and preventive measure to promote mitochondrial function and expressions of mitofusin, BDNF and antioxidant enzymes in brain, so as to protect brain energy metabolism against CUMS, rather than the compound of corticosterone.


Journal of Affective Disorders | 2014

Depression-like behaviors in mice subjected to co-treatment of high-fat diet and corticosterone are ameliorated by AICAR and exercise.

Weina Liu; Xiaofeng Zhai; Haipeng Li; Liu Ji

Major depressive disorder (MDD) and type II diabetes mellitus (T2DM) are highly co-morbid, and there may be a bi-directional connection between the two. Herein, we have described a mouse model of a depression-like and insulin-resistant (DIR) state induced by the co-treatment of high-fat diet (HFD) and corticosterone (CORT). 5-Aminoimidazole-4-carboxamide-1-β-d- ribofuranoside (AICAR), a pharmacological activator of AMP-activated protein kinase (AMPK), was originally used to improve insulin resistance (IR). Interestingly, our results show a clear potential for AICAR as a putative antidepressant with a chronic action on the DIR mice. In contrast to the traditional antidepressants, AICAR as a promising antidepressant avoids reducing insulin actions of skeletal muscle in the context of long-term HFD. Exercise also produced antidepressant effects. Our data suggest that the effects of AICAR and exercise on DIR may further increase our understanding on the link between depression and diabetes.


Psychiatry Research-neuroimaging | 2015

Metabolic factors-triggered inflammatory response drives antidepressant effects of exercise in CUMS rats

Weina Liu; Hongmei Wang; Yangkai Wang; Haipeng Li; Liu Ji

Chronic stress is a potential contributing factor for depression, accompanying with metabolic and inflammatory response. Exercise is considered as a treatment for depression, but mechanisms underlying its beneficial effects still remain unknown. The objectives of present study were to confirm that metabolic factors-triggered inflammatory response mediates the antidepressant actions of exercise in chronic unpredictable mild stress (CUMS) rats. It has been found that CUMS stimulated expression of ghrelin and its receptor Ghsr, but inhibited expression of leptin and its receptor LepRb. Ghrelin, via binding to Ghsr, induced phosphorylation of GSK-3β on Tyr216 and decreased phosphorylation on Ser9, thus increasing GSK-3β activity. Conversely, ghrelin binding to Ghsr decreased STAT3 activity, through decreasing phosphorylation of STAT3 on Tyr705 and increasing Ser727 phosphorylation. Negatively correlated with ghrelin, leptin binding to LepRb had opposite effects on the activity of GSK-3β and STAT3 via phosphorylation. In addition, decreased leptin level initiated NLRP3 activity via LepRb. Furthermore, GSK-3β inhibited STAT3 activation, thus promoting the expression of NLRP3. Meanwhile, swim improved metabolic and inflammatory response both in CUMS and control rats. Our findings suggest that exercise not only ameliorates metabolic disturbance and inflammatory response in depression, but also contributes to metabolic and inflammatory function in normal conditions.


Brain Behavior and Immunity | 2017

Leptin receptor knockout-induced depression-like behaviors and attenuated antidepressant effects of exercise are associated with STAT3/SOCS3 signaling

Weina Liu; Jiatong Liu; Jie Xia; Xiangli Xue; Hongmei Wang; Zhengtang Qi; Liu Ji

Relatively little has been known about pathophysiological mechanisms contributing to the development of neuropsychiatric symptoms in the context of metabolic syndrome. Impaired leptin signaling activation in db/db mice has been proposed as a potential link between behavioral and metabolic disorders. Our previous studies have shown that exercise has the beneficial effects on a depression-like and insulin-resistant state in mice. The present study aimed to determine whether and how leptin receptor knockout (db/db) induces depression-like behaviors, and to identify the antidepressant effects of swimming exercise in db/db mice. Our results support the validity of db/db mice as an animal model to study depression with metabolic abnormalities, but fail to confirm the improvement of exercise on depression. LepRb knockout-induced depression-like behaviors are associated with STAT3/SOCS3 signaling but independent of IKKβ/NFκB signaling. Our findings suggest the potential importance of LepRb as an exercise-regulated target for depression, also representing a new target underlying treatment-resistant depression.


Journal of Affective Disorders | 2018

OGT-related mitochondrial motility is associated with sex differences and exercise effects in depression induced by prenatal exposure to glucocorticoids

Weina Liu; Hongmei Wang; Xiangli Xue; Jie Xia; Jiatong Liu; Zhengtang Qi; Liu Ji

BACKGROUND Prenatal exposure to glucocorticoids (GCs) has been found to trigger abnormal behaviors and deleterious neurological effects on offspring both in animals and in humans. The sex differences in depression have been replicated in numerous studies across cultures, persisting throughout the reproductive years. As an X-linked gene in rodents and in humans, O-GlcNAc transferase (OGT) may provide a novel perspective for the sex differences in depression. METHODS In the last third of pregnancy (gestational day 14-21), rats were subcutaneously administered either 0.13mg/kg dexamethasone-21-phosphate disodium salt (0.1mg/kg DEX) or vehicle (0.9% saline) once a day for 7 days. Adolescent (4 weeks) offspring were then trained in a swimming program or not. RESULTS Here we found that adult offspring rats exposed to DEX prenatally exhibited sex-specific depression-like behaviors, males being more vulnerable than females. Swimming exercise ameliorated the above-mentioned depressive syndromes, which may be a compensatory effect for male disadvantage suffering from prenatal stress. Furthermore, the effects of prenatal DEX exposure and swimming exercise on depression were associated with OGT-related mitochondrial motility, including PINK1/Parkin pathway and AKT/GSK3β pathway. LIMITATIONS Representative kymographs of mitochondrial motility were not detected and no causal effects were obtained by OGT gene overexpression or gene knockout in this study. CONCLUSIONS Our results provide a new perspective for better understanding sex differences and exercise effects in depression and may offer new mechanism-based therapeutic targets for depression.


Psychosomatic Medicine | 2016

The Role of Nitric Oxide in the Antidepressant Actions of 5-Aminoimidazole-4-Carboxamide-1-β-D-Ribofuranoside in Insulin-Resistant Mice.

Weina Liu; Yangkai Wang; Haipeng Li; Liu Ji

Objective Depression and Type 2 diabetes mellitus are interrelated conditions, but the underlying neurobiology is insufficiently understood. The current study compared the effects of a pharmacological manipulation with 5-aminoimidazole-4-carboxamide-1-&bgr;-D-ribofuranoside (AICAR) that targets neurobiological processes by adenosine 5′-monophosphate–activated protein kinase activation versus exercise on depression-like behavior and nitric oxide (NO)–related measures. Methods A mouse model of a depression-like and insulin-resistant state, induced by the co-treatment of high-fat diet and corticosterone administration, was used to examine the antidepressant action of AICAR and exercise. Results Data showed that AICAR was a putative antidepressant in the depression-like and insulin-resistant mice (total ambulatory distance in the open-field test was 5120.69 ± 167.47 cm, mobility duration in the forced swim test was 17.61 ± 1.54 seconds, latency to feed in the novelty suppressed feeding test was 255.67 ± 37.80 seconds; all p values < .05). Furthermore, the antidepressant actions of AICAR required endothelial nitric oxide synthase activity with increased NO production in the prefrontal cortex, whereas corticosterone-induced expression of neuronal nitric oxide synthase and NO production may increase the risk of depression. In contrast to the traditional antidepressants such as ketamine and imipramine, AICAR interfered with the effects of insulin in skeletal muscle in the context of high-fat diet, consistent with the potential antidepressant effects of AICAR. Exercise also resulted in activation of adenosine 5′-monophosphate–activated protein kinase, nitric oxide synthase, and NO production (all p values < .01), which in turn may be implicated in the antidepressant effects of exercise. Conclusions These findings suggest that NO is an essential signal mediating the antidepressant actions of AICAR. Ultimately, the concurrent effects of AICAR on brain insulin action and mitochondrial function suggest a potential of neural insulin resistance, which may contribute to our understanding of the comorbidity of depression and Type 2 diabetes.


Journal of Affective Disorders | 2018

Swimming exercise reverses CUMS-induced changes in depression-like behaviors and hippocampal plasticity-related proteins

Weina Liu; Xiangli Xue; Jie Xia; Jiatong Liu; Zhengtang Qi

BACKGROUND Stress-induced failed resilience of brain plasticity can contribute to the onset and recurrence of depression. Chronic stress has been reported to open windows of epigenetic plasticity in hippocampus. However, how hippocampal plasticity underlies depression-like behaviors and how it adapts in response to stress has not been addressed. The present study aimed to investigate the signaling mechanisms of CUMS affecting hippocampal plasticity-related proteins expression and the regulation of swimming exercise in mice. METHODS Male C57BL/6 mice were subjected to chronic unpredictable mild stress (CUMS) for 7 weeks. From the 4th week, CUMS mice were trained in a moderate swimming program for a total of 4 weeks. A videocomputerized tracking system was used to record behaviors of animals for a 5-min session. Real-time PCR and Western Blotting were used to examine gene expression in mouse hippocampus. RESULTS Our results demonstrated that CUMS induced depression-like behaviors, which were reversed by swimming exercise. Moreover, the behavioral changes induced by CUMS and exercise were correlated with hippocampal plasticity-related proteins expression of growth-associated protein-43 (GAP-43) and synaptophysin (SYN). The molecular mechanisms regulating this plasticity may include SIRT1/mircoRNA, CREB/BDNF, and AKT/GSK-3β signaling pathways. LIMITATIONS We did not establish a correlation between depression-like behaviors induced by chronic stress and epigenetic changes of hippocampal plasticity, either a causal molecular signaling underling this plasticity. CONCLUSIONS Our findings have identified swimming exercise effects on CUMS-induced changes in depression-like behaviors and hippocampal plasticity-related proteins, which provide a framework for developing new strategies to treat stress-induced depression.


Oncotarget | 2017

Targeting viperin improves diet-induced glucose intolerance but not adipose tissue inflammation

Zhengtang Qi; Jie Xia; Xiangli Xue; Jiatong Liu; Weina Liu; Shuzhe Ding

Viperin is an interferon-inducible antiviral protein, responsible for antiviral response to a variety of viral infections. Here, we show that silencing viperin by antisense oligonucleotides (ASO) protects against diet-induced glucose intolerance, and yet exacerbates adipose tissue inflammation. In high-fat diet-fed mice, viperin ASO improves glucose homeostasis, reduces plasma triglyceride concentrations and ameliorates diet-induced hepatic steatosis. Peripheral delivery of viperin by adeno-associated virus elevates fasting plasma glucose and insulin concentrations and reduces insulin-stimulated glucose uptake in skeletal muscle. Viperin overexpression reduces epinephrine- stimulated lipolysis in white adipose tissue, whereas viperin ASO increases expression of lipolytic genes. Targeting viperin by antisense oligonucleotides promotes reciprocal regulation of hepatic and adipose lipogenesis by reducing hepatic lipid content and increasing triacylglycerol content in adipose tissue. These findings reveal viperin as an important target to improve glucose metabolism, and suggest that suppressing antiviral potential may improve the metabolic adaptability to high-fat diet.


Journal of Human Kinetics | 2012

The Effect of Goal Setting Difficulty on Serving Success in Table Tennis and the Mediating Mechanism of Self-regulation

Weina Liu; Chenglin Zhou; Liu Ji; Jack C. Watson

Collaboration


Dive into the Weina Liu's collaboration.

Top Co-Authors

Avatar

Liu Ji

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Zhengtang Qi

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Jiatong Liu

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Jie Xia

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Xiangli Xue

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Chenglin Zhou

Shanghai University of Sport

View shared research outputs
Top Co-Authors

Avatar

Haipeng Li

Shanghai University of Sport

View shared research outputs
Top Co-Authors

Avatar

Hongmei Wang

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Jack C. Watson

West Virginia University

View shared research outputs
Top Co-Authors

Avatar

Jianqiang Lu

Shanghai University of Sport

View shared research outputs
Researchain Logo
Decentralizing Knowledge