Weiqiang Ma
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Weiqiang Ma.
Theoretical and Applied Climatology | 2014
Tobias Biermann; Wolfgang Babel; Weiqiang Ma; Xuelong Chen; Elisabeth Thiem; Yaoming Ma; Thomas Foken
The Tibetan Plateau plays an important role in the global water cycle and is strongly influenced by climate change. While energy and matter fluxes have been more intensely studied over land surfaces, a large proportion of lakes have either been neglected or parameterised with simple bulk approaches. Therefore, turbulent fluxes were measured over wet grassland and a shallow lake with a single eddy-covariance complex at the shoreline in the Nam Co basin in summer 2009. Footprint analysis was used to split observations according to the underlying surface, and two sophisticated surface models were utilised to derive gap-free time series. Results were then compared with observations and simulations from a nearby eddy-covariance station over dry grassland, yielding pronounced differences. Observations and footprint integrated simulations compared well, even for situations with flux contributions including grassland and lake. The accessibility problem for EC measurements on lakes can be overcome by combining standard meteorological measurements at the shoreline with model simulations, only requiring representative estimates of lake surface temperature.
Arctic, Antarctic, and Alpine Research | 2011
Weiqiang Ma; Yaoming Ma; Bob Su
Abstract Surface fluxes are important boundary conditions for climatological modeling and the Asian monsoon system. The recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer) sensor has enabled us to estimate surface fluxes to bridge the gap between local-scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A Surface Energy Balance System (SEBS) method based on ASTER data and field observations has been proposed and tested in this paper for deriving net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H), and latent heat flux (λE) over a heterogeneous land surface. As a case study, the methodology was applied to an experimental area at NamCo, located at the central Tibetan Plateau, China. The ASTER data of 11 June 2006, 29 October 2007, and 25 February 2008 was used in this paper for the NamCo area case. To validate the proposed methodology, the ground-measured land surface heat fluxes (net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H), and latent heat flux (λE)) were compared to the ASTER derived values. The results show that the derived land surface heat fluxes in different months over the study area are in good accordance with the land surface status. The tendency is basically to maintain consistency. It is therefore concluded that the proposed methodology is successful for the retrieval of land surface heat fluxes using the ASTER data and filed observations over the study area.
Arctic, Antarctic, and Alpine Research | 2009
Lei Zhong; Yaoming Ma; Zhongbo Su; Lixin Lu; Weiqiang Ma; Yaqiong Lü
Abstract The land-atmosphere interaction processes are unique at Mt. Everest as a result of high elevation. Based on turbulent data collected from April 2005 to March 2006 with the eddy covariance method at Quzong in the Rongbu Valley on the northern slope of Mt. Everest, land-atmosphere energy budget before and after the southwest monsoon onset and surface layer turbulent characteristics are studied for the first time. It is found that energy budget components (net radiation flux, sensible heat flux, latent heat flux, and soil heat flux) and surface heating field have strong diurnal and seasonal variations. In particular, under the influence of the southwest monsoon, the characteristics of surface parameters can be clearly identified. From pre-monsoon to monsoon season, the sensible heat flux decreases whereas the latent heat flux increases. The latent heat flux and Evaporative Fraction at Quzong are relatively high most of the year. Furthermore, the intensity of heating source in the wet season (from June to August) is much greater than that in the dry season (from October to December). The relationship between normalized standard deviation of wind speed and atmospheric stability, variations of normalized standard deviation of temperature, and humidity with atmospheric stability are analyzed using the Monin-Obukhov similarity theory. The result reveals that the normalized standard deviation of velocity components of the three-dimensional wind speed follows similarity relationships in the convective and near-neutral surface layer, but does not seem to be valid in stable surface layer. However, the normalized standard deviation of temperature and humidity does not obey Monin-Obukhov similarity theory in the entire interval of atmospheric stratifications.
Scientific Reports | 2017
Yaoming Ma; Weiqiang Ma; Lei Zhong; Zeyong Hu; Maoshan Li; Zhikun Zhu; Cunbo Han; Binbin Wang; Xin Liu
The Tibetan Plateau is an important water source in Asia. As the “Third Pole” of the Earth, the Tibetan Plateau has significant dynamic and thermal effects on East Asian climate patterns, the Asian monsoon process and atmospheric circulation in the Northern Hemisphere. However, little systematic knowledge is available regarding the changing climate system of the Tibetan Plateau and the mechanisms underlying its impact on East Asia. This study was based on “water-cryosphere-atmosphere-biology” multi-sphere interactions, primarily considering global climate change in relation to the Tibetan Plateau -East Asia climate system and its mechanisms. This study also analyzed the Tibetan Plateau to clarify global climate change by considering multi-sphere energy and water processes. Additionally, the impacts of climate change in East Asia and the associated impact mechanisms were revealed, and changes in water cycle processes and water conversion mechanisms were studied. The changes in surface thermal anomalies, vegetation, local circulation and the atmospheric heat source on the Tibetan Plateau were studied, specifically, their effects on the East Asian monsoon and energy balance mechanisms. Additionally, the relationships between heating mechanisms and monsoon changes were explored.
Advances in Atmospheric Sciences | 2012
Yaoming Ma; Binbin Wang; Lei Zhong; Weiqiang Ma
In this study, a parameterization scheme based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and in-situ data was tested for deriving the regional surface heating field over a heterogeneous landscape. As a case study, the methodology was applied to the whole Tibetan Plateau (TP) area. Four images of MODIS data (i.e., 30 January 2007, 15 April 2007, 1 August 2007, and 25 October 2007) were used in this study for comparison among winter, spring, summer, and autumn. The results were validated using the observations measured at the stations of the Tibetan Observation and Research Platform (TORP). The results show the following: (1) The derived surface heating field for the TP area was in good accord with the land-surface status, showing a wide range of values due to the strong contrast of surface features in the area. (2) The derived surface heating field for the TP was very close to the field measurements (observations). The APD (absolute percent difference) between the derived results and the field observations was <10%. (3) The mean surface heating field over the TP increased from January to April to August, and decreased in October. Therefore, the reasonable regional distribution of the surface heating field over a heterogeneous landscape can be obtained using this methodology. The limitations and further improvement of this method are also discussed.
Advances in Atmospheric Sciences | 2017
Fangfang Huang; Weiqiang Ma; Binbin Wang; Zeyong Hu; Yaoming Ma; Genhou Sun; Zhipeng Xie; Yun Lin
Time series of MODIS land surface temperature (Ts) and normalized difference vegetation index (NDVI) products, combined with digital elevation model (DEM) and meteorological data from 2001 to 2012, were used to map the spatial distribution of monthly mean air temperature over the Northern Tibetan Plateau (NTP). A time series analysis and a regression analysis of monthly mean land surface temperature (Ts) and air temperature (Ta) were conducted using ordinary linear regression (OLR) and geographical weighted regression (GWR). The analyses showed that GWR, which considers MODIS Ts, NDVI and elevation as independent variables, yielded much better results [R2 Adj > 0.79; root-mean-square error (RMSE) = 0.51°C–1.12°C] associated with estimating Ta compared to those from OLR (R2Adj = 0.40−0.78; RMSE = 1.60°C–4.38°C). In addition, some characteristics of the spatial distribution of monthly Ta and the difference between the surface and air temperature (Td) are as follows. According to the analysis of the 0°C and 10°C isothermals, Ta values over the NTP at elevations of 4000–5000 m were greater than 10°C in the summer (from May to October), and Ta values at an elevation of 3200 m dropped below 0°C in the winter (from November to April). Ta exhibited an increasing trend from northwest to southeast. Except in the southeastern area of the NTP, Td values in other areas were all larger than 0°C in the winter.
Theoretical and Applied Climatology | 2018
Chunchun Meng; Yaoming Ma; Weiqiang Ma; Yinlong Xu
This paper describes the performance of the Regional Atmospheric Modeling System (RAMS) in simulating a winter drought event, based on two different forcing datasets. We ran EC (ERA-Interim reanalysis data as initial and lateral boundary forcing conditions) and FNL (NCEP-FNL reanalysis data) simulations for the 2008/2009 winter drought event to quantify the impact of any uncertainty in the different initial and lateral boundary forcing data on regional model outputs. The response of the winter mean atmospheric states to the variations in the initial and lateral boundary conditions was investigated on the basis of these simulation results. The spatio-temporal features of precipitation from the EC and FNL runs closely resembled those measured from the Global Summary Of the Day (GSOD) observations, although the EC run data outperformed the FNL run data in both their spatial distribution patterns and precipitation values. The water vapor flux values explain how the differences in the precipitation values between the EC and the FNL runs were generated, whereas temperature values were not sensitive to any changes in forcing data. The model results from these runs also slightly overestimated temperature on both spatial and temporal scales. For the tropospheric atmospheric data recorded at the Fuyang Meteorological Station in Anhui Province, neither the time series nor the statistical analyses showed any evidence of superiority between the two different driver datasets compared with radiosonde data. However, on closer inspection, the influence of different initial and lateral boundary conditions on modeling the tropospheric atmospheric data appeared to be evident.
Theoretical and Applied Climatology | 2016
Weiqiang Ma; Yaoming Ma
Land surface heat fluxes over the heterogeneous landscape of the Tibetan Plateau can serve as boundary conditions for modeling the regional climate and the Asian monsoon system. The Weather Research and Forecasting (WRF) atmospheric modeling system has enabled us to model the land surface heat flux through sensitivity experiments that utilize in situ observation data and the regional land–atmosphere exchanges of water and heat fluxes that are foundational to understanding the water and energy cycles present during the Asian monsoon period. A series of sensitivity experiments based on the WRF model and field observations has been proposed and tested for deriving the land surface heat fluxes (surface net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) over a heterogeneous land surface. The sensitivity experiments were simulated over the field area of the Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau (CEOP-CAMP/Tibet), located on the northern Tibetan Plateau of China. A WRF modeling period from July to August 2007 was selected for the summer monsoon conditions. To validate the modeling results, the ground-measured or calculated variables (e.g., net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) were compared to the simulated values. The modeling results show that the derived model land surface heat fluxes are in agreement with the land surface observations over the study area in summer. Therefore, the WRF model sensitivity experiments were successful in simulating the land surface heat fluxes over the study area.
Advances in Atmospheric Sciences | 2018
Lang Zhang; Yaoming Ma; Weiqiang Ma; Binbin Wang
Based on high-quality data from eddy covariance measurements at the Qomolangma Monitoring and Research Station for Atmosphere and Environment (QOMS) and the Southeast Tibet Monitoring and Research Station for Environment (SETS), near-ground free convection conditions (FCCs) and their characteristics are investigated. At QOMS, strong thermal effects accompanied by lower wind speeds can easily trigger the occurrence of FCCs. The change of circulation from prevailing katabatic glacier winds to prevailing upslope winds and the oscillation of upslope winds due to cloud cover are the two main causes of decreases in wind speed at QOMS. The analysis of results from SETS shows that the most important trigger mechanism of FCCs is strong solar heating. Turbulence structural analysis using wavelet transform indicates that lower-frequency turbulence near the ground emerges from the detected FCCs both at QOMS and at SETS. It should be noted that the heterogeneous underlying surface at SETS creates large-scale turbulence during periods without the occurrence of FCCs. Regarding datasets of all seasons, the distribution of FCCs presents different characteristics during monsoonal and non-monsoonal periods.摘要利用珠穆朗玛大气与环境观测站(QOMS)及藏东南高山环境综合观测研究站(SETS)的经质量控制后并被质量评价为高质量的涡度相关观测数据, 对近地层自由对流条件的(FCCs)产生机制及其特征进行了分析. 在QOMS, 较强的加热作用配合低风速容易触发FCCs. 上午, 盛行弱的下山冰川风转换为盛行上坡风l上坡风建立以后, 当有云影响时, 加热小幅减弱(未减弱到使上坡风消失的程度), 风速减小. 这是QOMS局地环流中风速减小的两个主要原因. SETS的分析结果则显示, 该站FCCs的主要触发机制是较强的太阳辐射加热. 利用小波分析方法, 对两个站的近地层湍流结构进行了分析, 两个站的结果均显示存在一些较大尺度的湍流. 另外, SETS的非均匀下垫面导致在没有发生FCCs的时间段里, 出现了许多大尺度湍流, 这可能是造成该站能量不闭合的一个主要原因. 对两个站点全年FCCs发生时间的统计结果显示, 由于环流调整, 季风期与非季风期存在显著区别: QOMS, 季风期比非季风期FCCs发生时间晚, 发生频率低;SETS, 季风期FCCs发生时间不再主要集中在上午.
Journal of Geophysical Research | 2017
Binbin Wang; Yaoming Ma; Weiqiang Ma; Zhongbo Su
Precise measurements of evaporation and understanding of the physical controls on turbulent heat flux over lakes have fundamental significance for catchment-scale water balance analysis and local-scale climate modeling. The observation and simulation of lake-air turbulent flux processes have been widely carried out, but studies that examine high-altitude lakes on the Tibetan Plateau are still rare, especially for small lakes. An eddy covariance (EC) system, together with a four-component radiation sensor and instruments for measuring water temperature profiles, was set up in a small lake within the Nam Co basin in April 2012 for long-term evaporation and energy budget observations. With the valuable measurements collected during the ice-free periods in 2012 and 2013, the main conclusions are summarized as follows: First, a bulk aerodynamic transfer model (B model), with parameters optimized for the specific wave pattern in the small lake, could provide reliable and consistent results with EC measurements, and B model simulations are suitable for data interpolation due to inadequate footprint or malfunction of the EC instrument. Second, the total evaporation in this small lake (812 mm) is approximately 200 mm larger than that from adjacent Nam Co (approximately 627 mm) during their ice-free seasons. Third, wind speed shows significance at temporal scales of half hourly, whereas water vapor and temperature gradients have higher correlations over temporal scales of daily and monthly in lake-air turbulent heat exchange. Finally, energy stored during April to June is mainly released during September to November, suggesting an energy balance closure value of 0.97.