Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weiqin Lu is active.

Publication


Featured researches published by Weiqin Lu.


Antioxidants & Redox Signaling | 2008

Redox regulation of cell survival

Dunyaporn Trachootham; Weiqin Lu; Marcia A. Ogasawara; Nilsa Rivera-Del Valle; Peng Huang

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulation of cell survival. In general, moderate levels of ROS/RNS may function as signals to promote cell proliferation and survival, whereas severe increase of ROS/RNS can induce cell death. Under physiologic conditions, the balance between generation and elimination of ROS/RNS maintains the proper function of redox-sensitive signaling proteins. Normally, the redox homeostasis ensures that the cells respond properly to endogenous and exogenous stimuli. However, when the redox homeostasis is disturbed, oxidative stress may lead to aberrant cell death and contribute to disease development. This review focuses on the roles of key transcription factors, signal-transduction pathways, and cell-death regulators in affecting cell survival, and how the redox systems regulate the functions of these molecules. The current understanding of how disturbance in redox homeostasis may affect cell death and contribute to the development of diseases such as cancer and degenerative disorders is reviewed. We also discuss how the basic knowledge on redox regulation of cell survival can be used to develop strategies for the treatment or prevention of those diseases.


Cancer Research | 2007

Novel Action of Paclitaxel against Cancer Cells: Bystander Effect Mediated by Reactive Oxygen Species

Jérôme Alexandre; Yumin Hu; Weiqin Lu; Helene Pelicano; Peng Huang

Generation of reactive oxygen species (ROS) has been observed in cancer cells treated with paclitaxel, but the underlying mechanisms and therapeutic implications remain unclear. In the present study, we showed that paclitaxel promoted ROS generation through enhancing the activity of NADPH oxidase (NOX) associated with plasma membranes. Treatment of breast cancer cells caused an increased translocation of Rac1, a positive regulatory protein of NOX, to the membrane fraction. The paclitaxel-induced ROS generation occurred rapidly within several hours of drug exposure, with O(2)(-) and H(2)O(2) accumulation mainly outside the cells while the intracellular ROS remained unchanged. Importantly, the increase in extracellular ROS caused lethal damage to the bystander cancer cells not exposed to paclitaxel, as shown by two different methods using coculture systems where the bystander cells were differentiated from the paclitaxel-treated cells by fluorescent or radioactive labeling. This cytotoxic bystander effect was also observed with other microtubule-targeted agents vincristine and taxotere but not with 5-fluorouracil or doxorubicin. This toxic bystander effect was enhanced by CuZnSOD that converts O(2)(-) to H(2)O(2) and was abolished by a catalase that eliminates H(2)O(2). Furthermore, paclitaxel was able to induce an almost complete inhibition of proliferation of the bystander cells in the coculture system. Our study revealed a novel mechanism by which paclitaxel induces toxic bystander effect through generation of extracellular H(2)O(2) from the membrane-associated NOX. This may contribute to the potent anticancer activity of paclitaxel and provide a novel basis to improve the clinical use of this important drug.


Nature Cell Biology | 2012

Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia

Wan Zhang; Dunyaporn Trachootham; Jinyun Liu; Gang Chen; Helene Pelicano; Celia Garcia-Prieto; Weiqin Lu; Jan A. Burger; Carlo M. Croce; William Plunkett; Michael J. Keating; Peng Huang

Tissue stromal cells interact with leukaemia cells and profoundly affect their viability and drug sensitivity. Here we show a biochemical mechanism by which bone marrow stromal cells modulate the redox status of chronic lymphocytic leukaemia (CLL) cells and promote cellular survival and drug resistance. Primary CLL cells from patients exhibit a limited ability to transport cystine for glutathione (GSH) synthesis owing to a low expression level of Xc-transporter. In contrast, bone marrow stromal cells effectively import cystine and convert it to cysteine, which is then released into the microenvironment for uptake by CLL cells to promote GSH synthesis. The elevated level of GSH enhances leukaemia cell survival and protects them from drug-induced cytotoxicity. Furthermore, disabling this protective mechanism significantly sensitizes CLL cells to drug treatment in the stromal environment. This stromal–leukaemia interaction is critical for CLL cell survival and represents a key biochemical pathway for effectively targeting leukaemia cells to overcome drug resistance in vivo.


Cell Research | 2012

K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis.

Yumin Hu; Weiqin Lu; Gang Chen; Peng Wang; Zhao Chen; Yan Zhou; Marcia A. Ogasawara; Dunyaporn Trachootham; Li Feng; Helene Pelicano; Paul J. Chiao; Michael J. Keating; Guillermo Garcia-Manero; Peng Huang

Increased aerobic glycolysis and oxidative stress are important features of cancer cell metabolism, but the underlying biochemical and molecular mechanisms remain elusive. Using a tetracycline inducible model, we show that activation of K-rasG12V causes mitochondrial dysfunction, leading to decreased respiration, elevated glycolysis, and increased generation of reactive oxygen species. The K-RAS protein is associated with mitochondria, and induces a rapid suppression of respiratory chain complex-I and a decrease in mitochondrial transmembrane potential by affecting the cyclosporin-sensitive permeability transition pore. Furthermore, pre-induction of K-rasG12V expression in vitro to allow metabolic adaptation to high glycolytic metabolism enhances the ability of the transformed cells to form tumor in vivo. Our study suggests that induction of mitochondrial dysfunction is an important mechanism by which K-rasG12V causes metabolic changes and ROS stress in cancer cells, and promotes tumor development.


Cancer Research | 2009

Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism

Helene Pelicano; Weiqin Lu; Yan Zhou; Wan Zhang; Zhao Chen; Yumin Hu; Peng Huang

Although mitochondrial dysfunction and reactive oxygen species (ROS) stress have long been observed in cancer cells, their role in promoting malignant cell behavior remains unclear. Here, we show that perturbation of the mitochondrial respiratory chain in breast cancer cells leads to a generation of subclones of cells with increased ROS, active proliferation, high cellular motility, and invasive behaviors in vitro and in vivo. Gene expression analysis using microarrays revealed that all subclones overexpressed CXCL14, a novel chemokine with undefined function. We further show that CXCL14 expression is up-regulated by ROS through the activator protein-1 signaling pathway and promotes cell motility through elevation of cytosolic Ca(2+) by binding to the inositol 1,4,5-trisphosphate receptor on the endoplasmic reticulum. Abrogation of CXCL14 expression using a decoy approach suppressed cell motility and invasion. Our data suggest that mitochondrial dysfunction and ROS stress promote cancer cell motility through a novel pathway mediated by CXCL14.


Leukemia | 2008

Effective killing of Gleevec-resistant CML cells with T315I mutation by a natural compound PEITC through redox-mediated mechanism.

Hui Zhang; Dunyaporn Trachootham; Weiqin Lu; Jennifer S. Carew; Francis J. Giles; Michael J. Keating; Ralph B. Arlinghaus; Peng Huang

Mutation of Bcr-Abl is an important mechanism by which chronic myelogenous leukemia (CML) cells become resistant to Gleevec. The T315I mutation is clinically significant since CML cells harboring this mutation are insensitive to Gleevec and other Bcr-Abl-targeted drugs. Identification of new agents capable of effectively killing CML cells with T315I mutation would have important therapeutic implications in Gleevec-resistant CML. Here, we showed that β-phenylethyl isothiocyanate (PEITC), a natural compound found in vegetables, is effective in killing CML cells expressing T315I BCR-ABL. Treatment of leukemia cell lines harboring wild-type or mutant Bcr-Abl with 10 μM PEITC resulted in an elevated ROS stress and a redox-mediated degradation of the BCR-ABL protein, leading to massive death of the leukemia cells. Antioxidant NAC attenuated the PEITC-induced oxidative stress in CML cells and prevented the degradation of BCR-ABL, caspase-3 activation and cell death. We further showed that the ROS-induced degradation of BCR-ABL was mediated partially by caspase-3 and the proteasome pathway. The ability of PEITC to effectively kill T315I-positive CML cells was further confirmed using primary leukemia cells isolated from CML patients. Our results suggest that PEITC is a promising compound capable of killing Gleevec-resistant CML cells through a ROS-mediated mechanism and warrants further investigations.


PLOS Biology | 2012

Novel Role of NOX in Supporting Aerobic Glycolysis in Cancer Cells with Mitochondrial Dysfunction and as a Potential Target for Cancer Therapy

Weiqin Lu; Yumin Hu; Gang Chen; Zhao Chen; Hui Zhang; Feng Wang; Li Feng; Helene Pelicano; Hua Wang; Michael J. Keating; Jinsong Liu; Wallace L. McKeehan; Huamin Wang; Yongde Luo; Peng Huang

NAD(P)H oxidase plays a role in cancer metabolism by providing NAD+ to support increased glycolysis.


Blood | 2010

Overcoming resistance to histone deacetylase inhibitors in human leukemia with the redox modulating compound β-phenylethyl isothiocyanate

Yumin Hu; Weiqin Lu; Gang Chen; Hui Zhang; Yu Jia; Yue Wei; Hui Yang; Wan Zhang; Warren Fiskus; Kapil Bhalla; Michael J. Keating; Peng Huang; Guillermo Garcia-Manero

Mechanisms of action and resistance of histone deacetylase inhibitors (HDACIs) are not well understood. A gene expression analysis performed in a phase 1 trial of vorinostat in leukemia indicated that overexpression of genes involved in antioxidant defense was associated with clinical resistance. We hypothesized that nonepigenetic mechanisms may be involved in resistance to HDACI therapy in leukemia. Here we confirmed up-regulation of a series of antioxidants in a pan-HDACI-resistant leukemia cell line HL60/LR. Vorinostat induced reactive oxygen species (ROS) through nicotinamide adenine dinucleotide phosphate oxidase in leukemia cells. An increase in ROS resulted in translocation of nuclear factor E2-related factor 2 from cytosol to nucleus, leading to up-regulation of antioxidant genes, including a majority of glutathione-associated enzymes as a cellular protective mechanism. Addition of β-phenylethyl isothiocyanate, a natural compound capable of depleting cellular glutathione, significantly enhanced the cytotoxicity of vorinostat in leukemia cell lines and primary leukemia cells by inhibiting the cytoprotective antioxidant response. These results suggest that ROS plays an important role in action of vorinostat and that combination with a redox-modulating compound increases sensitivity to HDACIs and also overcomes vorinostat resistance. Such a combination strategy may be an effective therapeutic regimen and have potential clinical application in leukemia.


Molecular Cell | 2016

Allele-specific reprogramming of cancer metabolism by the long non-coding RNA, CCAT2

Roxana S. Redis; Luz E. Vela; Weiqin Lu; Juliana Ferreira de Oliveira; Cristina Ivan; Cristian Rodriguez-Aguayo; Douglas Adamoski; Barbara Pasculli; Ayumu Taguchi; Yunyun Chen; Agustín F. Fernández; Luis Valledor; Katrien Van Roosbroeck; Samuel Chang; Maitri Y. Shah; Garrett Kinnebrew; Leng Han; Yaser Atlasi; Lawrence H. Cheung; Gilbert Y. Huang; Paloma Monroig; Marc S. Ramirez; Tina Catela Ivković; Long Van; Hui Ling; Roberta Gafà; Sanja Kapitanović; Giovanni Lanza; James A. Bankson; Peng Huang

Altered energy metabolism is a cancer hallmark as malignant cells tailor their metabolic pathways to meet their energy requirements. Glucose and glutamine are the major nutrients that fuel cellular metabolism, and the pathways utilizing these nutrients are often altered in cancer. Here, we show that the long ncRNA CCAT2, located at the 8q24 amplicon on cancer risk-associated rs6983267 SNP, regulates cancer metabolism in vitro and in vivo in an allele-specific manner by binding the Cleavage Factor I (CFIm) complex with distinct affinities for the two subunits (CFIm25 and CFIm68). The CCAT2 interaction with the CFIm complex fine-tunes the alternative splicing of Glutaminase (GLS) by selecting the poly(A) site in intron 14 of the precursor mRNA. These findings uncover a complex, allele-specific regulatory mechanism of cancer metabolism orchestrated by the two alleles of a long ncRNA.


BMC Gastroenterology | 2013

Activation of Liver FGF21 in hepatocarcinogenesis and during hepatic stress

Chaofeng Yang; Weiqin Lu; Tao Lin; Pan You; Min Ye; Yanqing Huang; Xianhan Jiang; Cong Wang; Fen Wang; Mong Hong Lee; Sai-Ching Jim Yeung; Randy L. Johnson; Chongjuan Wei; Robert Y. L. Tsai; Marsha L. Frazier; Wallace L. McKeehan; Yongde Luo

BackgroundFGF21 is a promising intervention therapy for metabolic diseases as fatty liver, obesity and diabetes. Recent results suggest that FGF21 is highly expressed in hepatocytes under metabolic stress caused by starvation, hepatosteatosis, obesity and diabetes. Hepatic FGF21 elicits metabolic benefits by targeting adipocytes of the peripheral adipose tissue through the transmembrane FGFR1-KLB complex. Ablation of adipose FGFR1 resulted in increased hepatosteatosis under starvation conditions and abrogation of the anti-obesogenic action of FGF21. These results indicate that FGF21 may be a stress responsive hepatokine that targets adipocytes and adipose tissue for alleviating the damaging effects of stress on the liver. However, it is unclear whether hepatic induction of FGF21 is limited to only metabolic stress, or to a more general hepatic stress resulting from liver pathogenesis and injury.MethodsIn this survey-based study, we examine the nature of hepatic FGF21 activation in liver tissues and tissue sections from several mouse liver disease models and human patients, by quantitative PCR, immunohistochemistry, protein chemistry, and reporter and CHIP assays. The liver diseases include genetic and chemical-induced HCC, liver injury and regeneration, cirrhosis, and other types of liver diseases.ResultsWe found that mouse FGF21 is induced in response to chemical (DEN treatment) and genetic-induced hepatocarcinogenesis (disruptions in LKB1, p53, MST1/2, SAV1 and PTEN). It is also induced in response to loss of liver mass due to partial hepatectomy followed by regeneration. The induction of FGF21 expression is potentially under the control of stress responsive transcription factors p53 and STAT3. Serum FGF21 levels correlate with FGF21 expression in hepatocytes. In patients with hepatitis, fatty degeneration, cirrhosis and liver tumors, FGF21 levels in hepatocytes or phenotypically normal hepatocytes are invariably elevated compared to normal health subjects.ConclusionFGF21 is an inducible hepatokine and could be a biomarker for normal hepatocyte function. Activation of its expression is a response of functional hepatocytes to a broad spectrum of pathological changes that impose both cellular and metabolic stress on the liver. Taken together with our recent data, we suggest that hepatic FGF21 is a general stress responsive factor that targets adipose tissue for normalizing local and systemic metabolic parameters while alleviating the overload and damaging effects imposed by the pathogenic stress on the liver. This study therefore provides a rationale for clinical biomarker studies in humans.

Collaboration


Dive into the Weiqin Lu's collaboration.

Top Co-Authors

Avatar

Peng Huang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gang Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helene Pelicano

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael J. Keating

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Li Feng

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Marcia A. Ogasawara

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dunyaporn Trachootham

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hui Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge