Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weiren Lin is active.

Publication


Featured researches published by Weiren Lin.


Science | 2013

Low Coseismic Friction on the Tohoku-Oki Fault Determined from Temperature Measurements

Patrick M. Fulton; Emily E. Brodsky; Yoshihiro Kano; Jim Mori; Frederick M. Chester; Tsuyoshi Ishikawa; Robert N. Harris; Weiren Lin; Nobuhisa Eguchi; Sean Toczko; T Expedition; Kr Scientists

Deep Drilling for Earthquake Clues The 2011 Mw 9.0 Tohoku-Oki earthquake and tsunami were remarkable in many regards, including the rupturing of shallow trench sediments with huge associated slip (see the Perspective by Wang and Kinoshita). The Japan Trench Fast Drilling Project rapid response drilling expedition sought to sample and monitor the fault zone directly through a series of boreholes. Chester et al. (p. 1208) describe the structure and composition of the thin fault zone, which is predominately comprised of weak clay-rich sediments. Using these same fault-zone materials, Ujiie et al. (p. 1211) performed high-velocity frictional experiments to determine the physical controls on the large slip that occurred during the earthquake. Finally, Fulton et al. (p. 1214) measured in situ temperature anomalies across the fault zone for 9 months, establishing a baseline for frictional resistance and stress during and following the earthquake. The Tohoku-Oki earthquake occurred along a thin, clay-rich fault zone in the basal strata of the subducting plate. The frictional resistance on a fault during slip controls earthquake dynamics. Friction dissipates heat during an earthquake; therefore, the fault temperature after an earthquake provides insight into the level of friction. The Japan Trench Fast Drilling Project (Integrated Ocean Drilling Program Expedition 343 and 343T) installed a borehole temperature observatory 16 months after the March 2011 moment magnitude 9.0 Tohoku-Oki earthquake across the fault where slip was ~50 meters near the trench. After 9 months of operation, the complete sensor string was recovered. A 0.31°C temperature anomaly at the plate boundary fault corresponds to 27 megajoules per square meter of dissipated energy during the earthquake. The resulting apparent friction coefficient of 0.08 is considerably smaller than static values for most rocks.


Geochemistry Geophysics Geosystems | 2010

In situ stress state in the Nankai accretionary wedge estimated from borehole wall failures

Chandong Chang; Lisa C. McNeill; J. Casey Moore; Weiren Lin; Marianne Conin; Yasuhiro Yamada

We constrain the orientations and magnitudes of in situ stress tensors using borehole wall failures (borehole breakouts and drilling-induced tensile fractures) detected in four vertical boreholes (C0002, C0001, C0004, and C0006 from NW to SE) drilled in the Nankai accretionary wedge. The directions of the maximum horizontal principal stress (SHmax), indicated by the azimuths of borehole wall failures, are consistent in individual holes, but those in C0002 (margin-parallel SHmax) are nearly perpendicular to those in all other holes (margin-normal SHmax). Constrained stress magnitudes in C0001 and C0002, using logged breakout widths combined with empirical rock strength derived from sonic velocity, as well as the presence of the drilling-induced tensile fractures, suggest that the stress state in the shallow portion of the wedge (fore-arc basin and slope sediment formations) is predominantly in favor of normal faulting and that the stress state in the deeper accretionary prism is in favor of probable strike-slip faulting or possible reverse faulting. Thus, the stress regime appears to be divided with depth by the major geological boundaries such as unconformities or thrust faults. The margin-perpendicular tectonic stress components in the two adjacent sites, C0001 and C0002, are different, suggesting that tectonic force driven by the plate pushing of the Philippine Sea plate does not uniformly propagate. Rather, the stress field is inferred to be influenced by additional factors such as local deformation caused by gravitation-driven extension in the fore arc and thrusting and bending within individual geologic domains.


Geophysical Research Letters | 2010

Present-day principal horizontal stress orientations in the Kumano forearc basin of the southwest Japan subduction zone determined from IODP NanTroSEIZE drilling Site C0009

Weiren Lin; Mai-Linh Doan; J. Casey Moore; Lisa C. McNeill; Timothy Byrne; Takatoshi Ito; Demian M. Saffer; Marianne Conin; Masataka Kinoshita; Yoshinori Sanada; Kyaw Thu Moe; Eiichiro Araki; Harold Tobin; David F. Boutt; Yasuyuki Kano; Nicholas W. Hayman; Peter B. Flemings; Gary J. Huftile; Deniz Cukur; Christophe Buret; Anja M. Schleicher; Natalia Efimenko; Kuniyo Kawabata; David M. Buchs; Shijun Jiang; Koji Kameo; Keika Horiguchi; Thomas Wiersberg; Achim J Kopf; Kazuya Kitada

A 1.6 km riser borehole was drilled at site C0009 of the NanTroSEIZE, in the center of the Kumano forearc basin, as a landward extension of previous drilling in the southwest Japan Nankai subduction zone. We determined principal horizontal stress orientations from analyses of borehole breakouts and drilling-induced tensile fractures by using wireline logging formation microresistivity images and caliper data. The maximum horizontal stress orientation at C0009 is approximately parallel to the convergence vector between the Philippine Sea plate and Japan, showing a slight difference with the stress orientation which is perpendicular to the plate boundary at previous NanTroSEIZE sites C0001, C0004 and C0006 but orthogonal to the stress orientation at site C0002, which is also in the Kumano forearc basin. These data show that horizontal stress orientations are not uniform in the forearc basin within the surveyed depth range and suggest that oblique plate motion is being partitioned into strike-slip and thrusting. In addition, the stress orientations at site C0009 rotate clockwise from basin sediments into the underlying accretionary prism.


Science | 2013

Stress State in the Largest Displacement Area of the 2011 Tohoku-Oki Earthquake

Weiren Lin; Marianne Conin; John Moore; Frederick M. Chester; Yasuyuki Nakamura; Jim Mori; Louise Anderson; Emily E. Brodsky; Nobuhisa Eguchi; B. Cook; Tamara N. Jeppson; Monica Wolfson-Schwehr; Yoshinori Sanada; Shiro Saito; Yukari Kido; Takehiro Hirose; Jan H. Behrmann; Matt J. Ikari; Kohtaro Ujiie; Christie D. Rowe; James D. Kirkpatrick; Santanu Bose; Christine Regalla; Francesca Remitti; Virginia G. Toy; Patrick M. Fulton; Toshiaki Mishima; Tao Yang; Tianhaozhe Sun; Tsuyoshi Ishikawa

Stressed Out Large seismic events such as the 2011 magnitude 9.0 Tohoku-Oki earthquake can have profound effects not just on the severity of ground motion and tsunami generation, but also on the overall state of the crust in the surrounding regions. Lin et al. (p. 687) analyzed the stress 1 year after the Tohoku-Oki earthquake and compared it with the estimated stress state before the earthquake. In situ resistivity images were analyzed from three boreholes drilled into the crust across the plate interface where the earthquake occurred. Stress values indicate a nearly complete drop in stress following the earthquake such that the type of faulting above the plate boundary has changed substantially. These findings are consistent with observations that the sea floor moved nearly 50 meters during the earthquake. Borehole stress measurements indicate a nearly total stress drop in the region of largest slip. The 2011 moment magnitude 9.0 Tohoku-Oki earthquake produced a maximum coseismic slip of more than 50 meters near the Japan trench, which could result in a completely reduced stress state in the region. We tested this hypothesis by determining the in situ stress state of the frontal prism from boreholes drilled by the Integrated Ocean Drilling Program approximately 1 year after the earthquake and by inferring the pre-earthquake stress state. On the basis of the horizontal stress orientations and magnitudes estimated from borehole breakouts and the increase in coseismic displacement during propagation of the rupture to the trench axis, in situ horizontal stress decreased during the earthquake. The stress change suggests an active slip of the frontal plate interface, which is consistent with coseismic fault weakening and a nearly total stress drop.


Scientific Reports | 2012

Disturbance of deep-sea environments induced by the M9.0 Tohoku Earthquake

Shinsuke Kawagucci; Yukari Yoshida; Takuroh Noguchi; Makio C. Honda; Hiroshi Uchida; Hidenori Ishibashi; Fumiko Nakagawa; Urumu Tsunogai; Kei Okamura; Yoshihiro Takaki; Takuro Nunoura; Junichi Miyazaki; Miho Hirai; Weiren Lin; Hiroshi Kitazato; Ken Takai

The impacts of the M9.0 Tohoku Earthquake on deep-sea environment were investigated 36 and 98 days after the event. The light transmission anomaly in the deep-sea water after 36 days became atypically greater (∼35%) and more extensive (thickness ∼1500 m) near the trench axis owing to the turbulent diffusion of fresh seafloor sediment, coordinated with potential seafloor displacement. In addition to the chemical influx associated with sediment diffusion, an influx of 13C-enriched methane from the deep sub-seafloor reservoirs was estimated. This isotopically unusual methane influx was possibly triggered by the earthquake and its aftershocks that subsequently induced changes in the sub-seafloor hydrogeologic structures. The whole prokaryotic biomass and the development of specific phylotypes in the deep-sea microbial communities could rise and fall at 36 and 98 days, respectively, after the event. We may capture the snap shots of post-earthquake disturbance in deep-sea chemistry and microbial community responses.


Nature | 2017

Extreme hydrothermal conditions at an active plate-bounding fault

Rupert Sutherland; John Townend; Virginia G. Toy; Phaedra Upton; Jamie Coussens; Michael F. Allen; Laura May Baratin; Nicolas Barth; Leeza Becroft; C. M. Boese; Austin Boles; Carolyn Boulton; Neil G. R. Broderick; Lucie Janku-Capova; Brett M. Carpenter; Bernard Célérier; Calum J. Chamberlain; Alan Cooper; Ashley Coutts; Simon J. Cox; Lisa Craw; Mai-Linh Doan; Jennifer Eccles; D. R. Faulkner; Jason Grieve; Julia Grochowski; Anton Gulley; Arthur Hartog; Jamie Howarth; Katrina Jacobs

Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300–450 degrees Celsius, usually found at depths greater than 10–15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional–mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.


Earth, Planets and Space | 2014

Thermal conductivities, thermal diffusivities, and volumetric heat capacities of core samples obtained from the Japan Trench Fast Drilling Project (JFAST)

Weiren Lin; Patrick M Fulton; Robert N. Harris; Osamu Tadai; Osamu Matsubayashi; Wataru Tanikawa; Masataka Kinoshita

We report thermal conductivities, thermal diffusivities, and volumetric heat capacities determined by a transient plane heat source method for four whole-round core samples obtained by the Japan Trench Fast Drilling Project/Integrated Ocean Drilling Program Expedition 343. These thermal properties are necessary for the interpretation of a temperature anomaly detected in the vicinity of the plate boundary fault that ruptured during the 2011 Tohoku-Oki earthquake and other thermal processes observed within the Japan Trench Fast Drilling Project temperature observatory. Results of measured thermal conductivities are consistent with those independently measured using a transient line source method and a divided bar technique. Our measurements indicate no significant anisotropy in either thermal conductivity or thermal diffusivity.


Geochemistry Geophysics Geosystems | 2011

Quantification of free gas in the Kumano fore-arc basin detected from borehole physical properties: IODP NanTroSEIZE drilling Site C0009

Mai-Linh Doan; Marianne Conin; Pierre Henry; Thomas Wiersberg; David F. Boutt; David M. Buchs; Demian M. Saffer; Lisa C. McNeill; Deniz Cukur; Weiren Lin

The Kumano fore-arc basin overlies the Nankai accretionary prism, formed by the subduction of the Philippine Sea Plate beneath the Eurasian plate offshore the Kii Peninsula, SW Honshu, Japan. Seismic surveys and boreholes within the framework of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) project show evidence of gas hydrates and free gas within the basin. Here we use high-quality borehole sonic data from Integrated Oceanic Drilling Program (IODP) Site C0009 to quantify the free gas distribution in the landward part of the basin. The Brie theory is used to quantify gas content from sonic logs, which are calibrated from laboratory measurements on drill cores. First, we show that the sonic data are mainly sensitive to the fluid phase filling the intergranular pores (effective porosity), rather than to the total porosity that includes water bound to clay minerals. We then compare the effective porosity to lithodensity-derived porosity that acts as a proxy for total porosity. The combination of these two data sets also allows assessment of clay mineralogy of the sediments. Second, we compute free gas saturation and find a gas-rich interval that is restricted to a lithological unit characterized by a high abundance of wood fragments and lignite. This unit, at the base of the fore-arc basin, is a hydrocarbon source that should be taken into account in models explaining gas distribution and the formation of the bottom-simulating reflector within the Kumano fore-arc basin.


Geophysical Research Letters | 2012

Scale dependence of in-situ permeability measurements in the Nankai accretionary prism: The role of fractures

David F. Boutt; Demian M. Saffer; Mai-Linh Doan; Weiren Lin; Takatoshi Ito; Yasuyuki Kano; Peter B. Flemings; Lisa C. McNeill; Timothy Byrne; Nicholas W. Hayman; Kyaw Thu Moe

Modeling studies suggest that fluid permeability is an important control on the maintenance and distribution of pore fluid pressures at subduction zones generated through tectonic loading. Yet, to date, few data are available to constrain permeability of these materials, at appropriate scales. During IODP Expedition 319, downhole measurements of permeability within the uppermost accretionary wedge offshore SW Japan were made using a dual-packer device to isolate 1 m sections of borehole at a depth of 1500 m below sea floor. Analyses of pressure transients using numerical models suggest a range of in-situ fluid permeabilities (5E-15–9E-17 m2). These values are significantly higher than those measured on core samples (2E-19 m2). Borehole imagery and cores suggests the presence of multiple open fractures at this depth of measurement. These observations suggest that open permeable natural fractures at modest fracture densities could be important contributors to overall prism permeability structure at these scales.


Geochemistry Geophysics Geosystems | 2011

Thermal conductivities under high pressure in core samples from IODP NanTroSEIZE drilling site C0001

Weiren Lin; Osamu Tadai; Takehiro Hirose; Wataru Tanikawa; Manabu Takahashi; Hideki Mukoyoshi; Masataka Kinoshita

We examined the effects of high pressure on thermal conductivity in core samples from the slope–apron facies and the upper part of the accretionary prism at site C0001 of the NanTroSEIZE drilling program and in other samples of five terrestrial rock types. Thermal conductivity clearly increased with increasing pressure for both wet (water saturated) and dry samples. We determined the rate of thermal conductivity change of the NanTroSEIZE sediments to be 0.014 Wm−1K−1/MPa when pressure was increased, and 0.01 Wm−1K−1/MPa when pressure was decreased. Using the rate determined for decreasing pressure, we estimated that thermal conductivities measured at atmospheric pressure rather than at in situ pressure may be underestimated by 7% for a core sample from around 1 km depth and by 20% for a core sample from around 3 km depth. In general, the rate of thermal conductivity change with pressure showed a positive correlation with porosity. However, the relationship of the rate of thermal conductivity change to porosity is also dependent on the fabric, mineral composition, and pore structure of the sediments and rocks. Furthermore, for two sandstones we tested, the effect of pressure on thermal conductivity for dry samples was greater than that for wet samples.

Collaboration


Dive into the Weiren Lin's collaboration.

Top Co-Authors

Avatar

Wataru Tanikawa

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takehiro Hirose

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tetsuro Hirono

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

En Chao Yeh

National Taiwan Normal University

View shared research outputs
Top Co-Authors

Avatar

Sheng-Rong Song

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Wonn Soh

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Masataka Kinoshita

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Timothy Byrne

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Yohei Hamada

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Demian M. Saffer

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge