Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weisan Chen is active.

Publication


Featured researches published by Weisan Chen.


Nature Medicine | 2001

A novel influenza A virus mitochondrial protein that induces cell death

Weisan Chen; Paul A. Calvo; Daniela Malide; James Gibbs; Ulrich Schubert; Igor Bacik; Sameh Basta; Robert E. O'Neill; Jeanne H. Schickli; Peter Palese; Peter Henklein; Jack R. Bennink; Jonathan W. Yewdell

While searching for alternative reading-frame peptides encoded by influenza A virus that are recognized by CD8+ T cells, we found an abundant immunogenic peptide encoded by the +1 reading frame of PB1. This peptide derives from a novel conserved 87-residue protein, PB1-F2, which has several unusual features compared with other influenza gene products in addition to its mode of translation. These include its absence from some animal (particularly swine) influenza virus isolates, variable expression in individual infected cells, rapid proteasome-dependent degradation and mitochondrial localization. Exposure of cells to a synthetic version of PB1-F2 induces apoptosis, and influenza viruses with targeted mutations that interfere with PB1-F2 expression induce less extensive apoptosis in human monocytic cells than those with intact PB1-F2. We propose that PB1-F2 functions to kill host immune cells responding to influenza virus infection.


Immunity | 2000

Dissecting the Multifactorial Causes of Immunodominance in Class I–Restricted T Cell Responses to Viruses

Weisan Chen; Luis C. Antón; Jack R. Bennink; Jonathan W. Yewdell

Following influenza virus infection, the numbers of mouse TCD8+ cells responding to five different determinants vary more than 50-fold in primary responses but less so in secondary responses. Surprisingly, each determinant elicits a highly diverse and highly sensitive TCD8+ response. Inefficient antigen processing by virus-infected cells accounts for the poor immunogenicity of just one of the subdominant determinants. Overexpressing class I-peptide complexes using vaccinia virus revealed that the poor immunogenicity of two subdominant determinants reflects limitations in T cell responses unrelated to TCR diversity or sensitivity. Despite greatly enhanced expression, the immunodominant determinant is actually less immunogenic when overexpressed by vaccinia virus. Immunodominance is also modulated by determinant-specific variations in the capacity of TCD8+ to suppress responses to other determinants.


Journal of Immunology | 2009

Genome-Wide Identification of Long Noncoding RNAs in CD8+ T Cells

Ken C. Pang; Marcel E. Dinger; Tim R. Mercer; Lorenzo Malquori; Sean M. Grimmond; Weisan Chen; John S. Mattick

Previous research into the molecular mechanisms that underlie Ag-specific CD8+ T cell differentiation and function has largely focused on the role of proteins. However, it is now apparent that the mammalian genome expresses large numbers of long (>200 nt) nonprotein-coding RNAs (ncRNAs), and there is increasing evidence that these RNAs have important regulatory functions, particularly in the regulation of epigenetic processes underpinning cell differentiation. In this study, we show that CD8+ T cells express hundreds of long ncRNAs, many of which are lymphoid-specific and/or change dynamically with lymphocyte differentiation or activation. Numerous ncRNAs surround or overlap immunologically important protein-coding genes and can be predicted to function via a range of regulatory mechanisms. The overlap of many long ncRNAs expressed in CD8+ T cells with microRNAs and small interfering RNAs further suggests that long ncRNAs may be processed into and exert their effects via smaller functional species. Finally, we show that the majority of long ncRNAs expressed in CD8+ T cells harbor signatures of evolutionary conservation, secondary structures, and/or regulated promoters, further supporting their functionality. Taken together, our findings represent the first systematic discovery of long ncRNAs expressed in CD8+ T cells and suggest that many of these transcripts are likely to play a role in adaptive immunity.


Cancer Research | 2008

The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells.

Lisa M. Ebert; Bee Shin Tan; Judy Browning; Suzanne Svobodova; Sarah E. Russell; Naomi Kirkpatrick; Craig Gedye; Denis J. Moss; Sweet Ping Ng; Duncan MacGregor; Ian D. Davis; Jonathan Cebon; Weisan Chen

FoxP3 is a member of the forkhead family of transcription factors critically involved in the development and function of CD25(+) regulatory T cells (Treg). Until recently, FoxP3 expression was thought to be restricted to the T-cell lineage. However, using immunohistochemistry and flow cytometric analysis of human melanoma tissue, we detected FoxP3 expression not only in the tumor infiltrating Treg but also in the melanoma cells themselves. FoxP3 is also widely expressed by established human melanoma cell lines (as determined by flow cytometry, PCR, and Western blot), as well as cell lines derived from other solid tumors. Normal B cells do not express FoxP3; however, expression could be induced after transformation with EBV in vitro and in vivo, suggesting that malignant transformation of healthy cells can induce FoxP3. In addition, a FOXP3 mRNA variant lacking exons 3 and 4 was identified in tumor cell lines but was absent from Treg. Interestingly, this alternative splicing event introduces a translation frame-shift that is predicted to encode a novel protein. Together, our results show that FoxP3, a key regulator of immune suppression, is not only expressed by Treg but also by melanoma cells, EBV-transformed B cells, and a wide variety of tumor cell lines.


Nucleic Acids Research | 2004

RNAdb—a comprehensive mammalian noncoding RNA database

Ken C. Pang; Stuart Stephen; Pär G. Engström; Khairina Tajul-Arifin; Weisan Chen; Claes Wahlestedt; Boris Lenhard; Yoshihide Hayashizaki; John S. Mattick

In recent years, there have been increasing numbers of transcripts identified that do not encode proteins, many of which are developmentally regulated and appear to have regulatory functions. Here, we describe the construction of a comprehensive mammalian noncoding RNA database (RNAdb) which contains over 800 unique experimentally studied non-coding RNAs (ncRNAs), including many associated with diseases and/or developmental processes. The database is available at http://research.imb.uq.edu.au/RNAdb and is searchable by many criteria. It includes microRNAs and snoRNAs, but not infrastructural RNAs, such as rRNAs and tRNAs, which are catalogued elsewhere. The database also includes over 1100 putative antisense ncRNAs and almost 20 000 putative ncRNAs identified in high-quality murine and human cDNA libraries, with more to be added in the near future. Many of these RNAs are large, and many are spliced, some alternatively. The database will be useful as a foundation for the emerging field of RNomics and the characterization of the roles of ncRNAs in mammalian gene expression and regulation.


Clinical Cancer Research | 2009

Regulatory T-Cell–Mediated Attenuation of T-Cell Responses to the NY-ESO-1 ISCOMATRIX Vaccine in Patients with Advanced Malignant Melanoma

Theo Nicholaou; Lisa M. Ebert; Ian D. Davis; Grant A. McArthur; Heather Jackson; Nektaria Dimopoulos; Bee Shin Tan; Eugene Maraskovsky; Lena Miloradovic; Wendie Hopkins; Linda Pan; Ralph Venhaus; Eric W. Hoffman; Weisan Chen; Jonathan Cebon

Purpose: NY-ESO-1 is a highly immunogenic antigen expressed in a variety of malignancies, making it an excellent target for cancer vaccination. We recently developed a vaccine consisting of full-length recombinant NY-ESO-1 protein formulated with ISCOMATRIX adjuvant, which generated strong humoral and T-cell–mediated immune responses and seemed to reduce the risk of disease relapse in patients with fully resected melanoma. This study examines the clinical and immunologic efficacy of the same vaccine in patients with advanced metastatic melanoma. Experimental Design: Delayed-type hypersensitivity responses, circulating NY-ESO-1–specific CD4+ and CD8+ T cells, and proportions of regulatory T cells (Treg) were assessed in patients. Results: In contrast to patients with minimal residual disease, advanced melanoma patients showed no clinical responses to vaccination. Although strong antibody responses were mounted, the generation of delayed-type hypersensitivity responses was significantly impaired. The proportion of patients with circulating NY-ESO-1–specific CD4+ T cells was also reduced, and although many patients had CD8+ T cells specific to a broad range of NY-ESO-1 epitopes, the majority of these responses were preexisting. Tregs were enumerated in the blood by flow cytometric detection of cells with a CD4+CD25+FoxP3+ and CD4+CD25+CD127− phenotype. Patients with advanced melanoma had a significantly higher proportion of circulating Treg compared with those with minimal residual disease. Conclusions: Our results point to a tumor-induced systemic immune suppression, showing a clear association between the stage of melanoma progression, the number of Treg in the blood, and the clinical and immunologic efficacy of the NY-ESO-1 ISCOMATRIX cancer vaccine.


Journal of Immunology | 2005

T Cell Determinants Incorporating β-Amino Acid Residues Are Protease Resistant and Remain Immunogenic In Vivo

Andrew Ian Webb; Michelle Anne Dunstone; Nicholas A. Williamson; Jason D. Price; Andrea L. de Kauwe; Weisan Chen; Aaron J. Oakley; Patrick Perlmutter; James McCluskey; Marie-Isabel Aguilar; Jamie Rossjohn; Purcell Aw

A major hurdle in designing successful epitope-based vaccines resides in the delivery, stability, and immunogenicity of the peptide immunogen. The short-lived nature of unmodified peptide-based vaccines in vivo limits their therapeutic application in the immunotherapy of cancers and chronic viral infections as well as their use in generating prophylactic immunity. The incorporation of β-amino acids into peptides decreases proteolysis, yet its potential application in the rational design of T cell mimotopes is poorly understood. To address this, we have replaced each residue of the SIINFEKL epitope individually with the corresponding β-amino acid and examined the resultant efficacy of these mimotopes. Some analogs displayed similar MHC binding and superior protease stability compared with the native epitope. Importantly, these analogs were able to generate cross-reactive CTLs in vivo that were capable of lysing tumor cells that expressed the unmodified epitope as a surrogate tumor Ag. Structural analysis of peptides in which anchor residues were substituted with β-amino acids revealed the basis for enhanced MHC binding and retention of immunogenicity observed for these analogs and paves the way for future vaccine design using β-amino acids. We conclude that the rational incorporation of β-amino acids into T cell determinants is a powerful alternative to the traditional homologous substitution of randomly chosen naturally occurring α-amino acids, and these mimotopes may prove particularly useful for inclusion in epitope-based vaccines.


Nature Immunology | 2012

NLRC4 inflammasomes in dendritic cells regulate noncognate effector function by memory CD8 + T cells

Greta Guarda; Thomas Gebhardt; Leif E. Sander; Kirsty R. Short; Dimitri A. Diavatopoulos; Odilia L. C. Wijburg; Hanwei Cao; Jason Waithman; Weisan Chen; Daniel Fernandez-Ruiz; Paul G. Whitney; William R. Heath; Roy Curtiss; Jürg Tschopp; Richard A. Strugnell; Sammy Bedoui

Memory T cells exert antigen-independent effector functions, but how these responses are regulated is unclear. We discovered an in vivo link between flagellin-induced NLRC4 inflammasome activation in splenic dendritic cells (DCs) and host protective interferon-γ (IFN-γ) secretion by noncognate memory CD8+ T cells, which could be activated by Salmonella enterica serovar Typhimurium, Yersinia pseudotuberculosis and Pseudomonas aeruginosa. We show that CD8α+ DCs were particularly efficient at sensing bacterial flagellin through NLRC4 inflammasomes. Although this activation released interleukin 18 (IL-18) and IL-1β, only IL-18 was required for IFN-γ production by memory CD8+ T cells. Conversely, only the release of IL-1β, but not IL-18, depended on priming signals mediated by Toll-like receptors. These findings provide a comprehensive mechanistic framework for the regulation of noncognate memory T cell responses during bacterial immunity.


Immunology and Cell Biology | 2006

Directions in the immune targeting of cancer: lessons learned from the cancer-testis Ag NY-ESO-1.

Theo Nicholaou; Lisa M. Ebert; Ian D. Davis; Neil Robson; Oliver Klein; Eugene Maraskovsky; Weisan Chen; Jonathan Cebon

Since the early 1990s, numerous cancer Ag have been defined and for a handful of these there is now some clinical experience, which has made it possible to assess their value as targets for cancer immunotherapy. The cancer‐testis Ag have been particularly attractive because their expression is limited to cancer and virtually no non‐malignant cells apart from germ cells and trophoblast. Among these, NY‐ESO‐1 has been the focus of our attention. The exceptional immunogenicity of this Ag coupled with its widespread distribution among many cancer types make it a very good vaccine candidate, with the potential to be used in vaccines against many types of malignancies. This article reviews emerging knowledge about the biology of NY‐ESO‐1 and experience with the early clinical development of vaccines directed against NY‐ESO‐1. These early studies have yielded a wealth of information about the immunology of NY‐ESO‐1 and set the scene for future clinical strategies for immune targeting of cancer.


Clinical Cancer Research | 2004

NY-ESO-1 Protein Formulated in ISCOMATRIX Adjuvant Is a Potent Anticancer Vaccine Inducing Both Humoral and CD8+ T-Cell-Mediated Immunity and Protection against NY-ESO-1+ Tumors

Eugene Maraskovsky; Sigrid Sjölander; Debbie Drane; Max Schnurr; Thuy Le; Luis Mateo; Thomas Luft; Kelly-Anne Masterman; Tsin-Yee Tai; Qiyuan Chen; Simon Green; Anders Sjölander; Martin Pearse; François A. Lemonnier; Weisan Chen; Jonathan Cebon; Andreas Suhrbier

NY-ESO-1 is a 180 amino-acid human tumor antigen expressed by many different tumor types and belongs to the family of “cancer-testis” antigens. In humans, NY-ESO-1 is one of the most immunogenic tumor antigens and NY-ESO-1 peptides have been shown to induce NY-ESO-1-specific CD8+ CTLs capable of altering the natural course of NY-ESO-1-expressing tumors in cancer patients. Here we describe the preclinical immunogenicity and efficacy of NY-ESO-1 protein formulated with the ISCOMATRIX adjuvant (NY-ESO-1 vaccine). In vitro, the NY-ESO-1 vaccine was readily taken up by human monocyte-derived dendritic cells, and on maturation, these human monocyte-derived dendritic cells efficiently cross-presented HLA-A2-restricted epitopes to NY-ESO-1-specific CD8+ T cells. In addition, epitopes of NY-ESO-1 protein were also presented on MHC class II molecules to NY-ESO-1-specific CD4+ T cells. The NY-ESO-1 vaccine induced strong NY-ESO-1-specific IFN-γ and IgG2a responses in C57BL/6 mice. Furthermore, the NY-ESO-1 vaccine induced NY-ESO-1-specific CD8+ CTLs in HLA-A2 transgenic mice that were capable of lysing human HLA-A2+ NY-ESO-1+ tumor cells. Finally, C57BL/6 mice, immunized with the NY-ESO-1 vaccine, were protected against challenge with a B16 melanoma cell line expressing NY-ESO-1. These data illustrate that the NY-ESO-1 vaccine represents a potent therapeutic anticancer vaccine.

Collaboration


Dive into the Weisan Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heather Jackson

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nektaria Dimopoulos

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Jonathan W. Yewdell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Quanming Zou

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jack R. Bennink

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Qiyuan Chen

Ludwig Institute for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge