Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weisheng Guo is active.

Publication


Featured researches published by Weisheng Guo.


ACS Nano | 2015

Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence.

Weisheng Guo; Xiaolian Sun; Orit Jacobson; Xuefeng Yan; Kyunghyun Min; Avinash Srivatsan; Gang Niu; Dale O. Kiesewetter; Jin Chang; Xiaoyuan Chen

Functionalized quantum dots (QDs) have been widely explored for multimodality bioimaging and proven to be versatile agents. Attaching positron-emitting radioisotopes onto QDs not only endows their positron emission tomography (PET) functionality, but also results in self-illuminating QDs, with no need for an external light source, by Cerenkov resonance energy transfer (CRET). Traditional chelation methods have been used to incorporate the radionuclide, but these methods are compromised by the potential for loss of radionuclide due to cleavage of the linker between particle and chelator, decomplexation of the metal, and possible altered pharmacokinetics of nanomaterials. Herein, we described a straightforward synthesis of intrinsically radioactive [64Cu]CuInS/ZnS QDs by directly incorporating 64Cu into CuInS/ZnS nanostructure with 64CuCl2 as synthesis precursor. The [64Cu]CuInS/ZnS QDs demonstrated excellent radiochemical stability with less than 3% free 64Cu detected even after exposure to serum containing EDTA (5 mM) for 24 h. PEGylation can be achieved in situ during synthesis, and the PEGylated radioactive QDs showed high tumor uptake (10.8% ID/g) in a U87MG mouse xenograft model. CRET efficiency was studied as a function of concentration and 64Cu radioactivity concentration. These [64Cu]CuInS/ZnS QDs were successfully applied as an efficient PET/self-illuminating luminescence in vivo imaging agents.


Theranostics | 2013

Synthesis of Zn-Cu-In-S/ZnS Core/Shell Quantum Dots with Inhibited Blue-Shift Photoluminescence and Applications for Tumor Targeted Bioimaging

Weisheng Guo; Na Chen; Yu Chun Tu; Chunhong Dong; Bingbo Zhang; Chunhong Hu; Jin Chang

A facile strategy is reported here for synthesis of Zn-Cu-In-S/ZnS (ZCIS/ZnS) core/shell QDs to address the synthetic issues that the unexpected blue-shift of CuInS2-based nanocrystals. In this strategy, Zn2+ ions are intentionally employed for the synthesis of alloyed ZCIS core QDs before ZnS shell coating, which contributes to the reduced blue-shift in photoluminescence (PL) emission. The experimental results demonstrate this elaborate facile strategy is effective for the reduction of blue-shift during shell growth. Particularly, a hypothesis is proposed and proved for explanation of this effective strategy. Namely, both cation exchange inhibition and ions accumulation are involved during the synthesis of ZCIS/ZnS QDs. Furthermore, the obtained near infrared (NIR) ZCIS/ZnS QDs are transferred into aqueous phase by a polymer coating technique and coupled with cyclic Arg-Gly-Asp peptide (cRGD) peptides. After confirmation of biocompability by cytotoxicity test on normal 3T3 cells, these QDs are injected via tail vein into nude mice bearing U87 MG tumor. The result indicates that the signals detected in the tumor region are much more distinguishing injected with ZCIS/ZnS-cRGD QDs than that injected with ZCIS/ZnS QDs.


ACS Applied Materials & Interfaces | 2014

Rapid and Quantitative Detection of Prostate Specific Antigen with a Quantum Dot Nanobeads-Based Immunochromatography Test Strip

Xue Li; Wenbin Li; Qiuhua Yang; Xiaoqun Gong; Weisheng Guo; Chunhong Dong; Junqing Liu; Lixue Xuan; Jin Chang

Convenient and fast testing using an immunochromatography test strip (ICTS) enables rapid yes/no decisions regarding a disease to be made. However, the fundamental limitations of an ICTS, such as a lack of quantitative and sensitive analysis, severely hampers its application in reliable medical testing for the early detection of cancer. Herein, we overcame these limitations by integrating an ICTS with quantum dot nanobeads (QD nanobeads), which were fabricated by encapsulating QDs within modified poly(tert-butyl acrylate-co-ethyl acrylate-co-methacrylic acid) and served as a robust signal-generating reagent for the ICTS. Prostate specific antigen (PSA) was used as a model analyte to demonstrate the performance of the QD nanobeads-based ICTS platform. Under optimized conditions, the concentration of PSA could be determined within 15 min with high sensitivity and specificity using only 40 μL of sample. The detection limit was enhanced by ∼12-fold compared with that of an ICTS that used QDs encapsulated by commercial 11-mercaptoundecanoic acid (QDs@MUA) as the signal-generating reagent. At the same time, the possible clinical utility of this approach was demonstrated by measurements recorded from PSA-positive patient specimens. Our data suggest that the QD nanobeads-based ICTS platform is not only rapid and low-cost but also highly sensitive and specific for use in quantitative point-of-care diagnostics; thus, it holds promise for becoming a part of routine medical testing for the early cancer of detection.


Nano Research | 2014

Color-tunable Gd-Zn-Cu-In-S/ZnS quantum dots for dual modality magnetic resonance and fluorescence imaging

Weisheng Guo; Weitao Yang; Yu Wang; Xiaolian Sun; Zhongyun Liu; Bingbo Zhang; Jin Chang; Xiaoyuan Chen

AbstractInorganic nanoparticles have been introduced into biological systems as useful probes for in vitro diagnosis and in vivo imaging, due to their relatively small size and exceptional physical and chemical properties. A new kind of colortunable Gd-Zn-Cu-In-S/ZnS (GZCIS/ZnS) quantum dots (QDs) with stable crystal structure has been successfully synthesized and utilized for magnetic resonance (MR) and fluorescence dual modality imaging. This strategy allows successful fabrication of GZCIS/ZnS QDs by incorporating Gd into ZCIS/ZnS QDs to achieve great MR enhancement without compromising the fluorescence properties of the initial ZCIS/ZnS QDs. The as-prepared GZCIS/ZnS QDs show high T1 MR contrast as well as “color-tunable” photoluminescence (PL) in the range of 550–725 nm by adjusting the Zn/Cu feeding ratio with high PL quantum yield (QY). The GZCIS/ZnS QDs were transferred into water via a bovine serum albumin (BSA) coating strategy. The resulting Cd-free GZCIS/ZnS QDs reveal negligible cytotoxicity on both HeLa and A549 cells. Both fluorescence and MR imaging studies were successfully performed in vitro and in vivo. The results demonstrated that GZCIS/ZnS QDs could be a dual-modal contrast agent to simultaneously produce strong MR contrast enhancement as well as fluorescence emission for in vivo imaging.


ACS Applied Materials & Interfaces | 2015

Facile Synthesis of Gd-Cu-In-S/ZnS Bimodal Quantum Dots with Optimized Properties for Tumor Targeted Fluorescence/MR In Vivo Imaging.

Weitao Yang; Weisheng Guo; Xiaoqun Gong; Bingbo Zhang; Sheng Wang; Na Chen; Wentao Yang; Yu Tu; Xiangming Fang; Jin Chang

Dual-modal imaging techniques have gained intense attention for their potential role in the dawning era of tumor early accurate diagnosis. Chelate-free robust dual-modal imaging nanoprobes with high efficiency and low toxicity are of essential importance for tumor targeted dual-modal in vivo imaging. It is still a crucial issue to endow Cd-free dual-modal nanoprobes with bright fluorescence as well as high relaxivity. Herein, a facile synthetic strategy was developed to prepare Gd-doped CuInS/ZnS bimodal quantum dots (GCIS/ZnS, BQDs) with optimized properties. The fluorescent properties of the GCIS/ZnS BQDs can be thoroughly optimized by varying reaction temperature, aging time, and ZnS coating. The amount of Gd precursor can be well-controlled to realize the optimized balance between the MR relaxivity and optical properties. The obtained hydrophobic GCIS/ZnS BQDs were surface engineered into aqueous phase with PEGylated dextran-stearyl acid polymeric lipid vesicles (PEG-DS PLVs). Upon the phase transfer, the hydrophilic GCIS/ZnS@PLVs exhibited pronounced near-infrared fluorescence as well as high longitudinal relaxivity (r1 = 9.45 mM(-1) S(-1)) in water with good colloidal stability. In vivo tumor-bearing animal experiments further verified GCIS/ZnS@PLVs could achieve tumor-targeted MR/fluorescence dual-modal imaging. No toxicity was observed in the in vivo and ex vivo experiments. The GCIS/ZnS@PLVs present great potential as bimodal imaging contrast agents for tumor diagnosis.


Journal of Materials Chemistry B | 2017

Protein/peptide-templated biomimetic synthesis of inorganic nanoparticles for biomedical applications

Weitao Yang; Weisheng Guo; Jin Chang; Bingbo Zhang

Currently, protein/peptide-based biomimetic mineralization has been demonstrated to be an efficient and promising strategy for synthesis of inorganic/metal nanoparticles (NPs) for bioapplications. This strategy is found to be bio-inspired, straightforward, and environmentally benign. It can produce inorganic/metal NPs with good stability, excellent biocompatibility, high water solubility, and rich surface functional groups for further bioconjunction. In this review, we provide a summary of the previously reported proteins/peptides as biotemplates involved in biomimetic mineralization synthesis, and categorize the obtained inorganic NPs ranging from metal nanoclusters (MNCs), quantum dots (QDs), gadolinium derivatives, and metal sulfide nanoparticles (MSNPs) with an emphasis on the recent progress in their use in biomedical applications, including bio-sensing, ion detection, bio-labeling, in vivo imaging and therapy. In the end, the challenges and future outlook in this emerging area are also discussed.


ACS Applied Materials & Interfaces | 2015

Facile Construction of Near Infrared Fluorescence Nanoprobe with Amphiphilic Protein-Polymer Bioconjugate for Targeted Cell Imaging

Zhongyun Liu; Na Chen; Chunhong Dong; Wei Li; Weisheng Guo; Hanjie Wang; Sheng Wang; Jian Tan; Yu Tu; Jin Chang

A simple, straightforward, and reproducible strategy for the construction of a near-infrared (NIR) fluorescence nanoprobe was developed by coating CuInS2/ZnS quantum dots (CIS/ZnS QDs) with a novel amphiphilic bioconjugate. The amphiphilic bioconjugate with a tailor-designed structure of bovine serum albumin (BSA) as the hydrophilic segment and poly(ε-caprolactone) (PCL) as the hydrophobic part was fabricated by chemical coupling the hydrophobic polymer chain to BSA via the maleimide-sulfhydryl reaction. By incorporating CIS/ZnS QDs into the hydrophobic cores of the self-assembly of BSA-PCL conjugate, the constructed NIR fluorescence nanoprobe exhibited excellent fluorescent properties over a wide pH range (pH 3-10) and a good colloidal stability in PBS buffer (pH = 7.4) with or without 10% fetal bovine serum. The presence of the outer BSA shell effectively reduced the nonspecific cellular binding and imparted high biocompatibility and low-toxicity to the probe. Moreover, the NIR fluorescence nanoprobe could be functionalized by conjugating cyclic Arg-Gly-Asp (cRGD) peptide, and the decorated nanoprobe was shown to be highly selective for targeted integrin αvβ3-overexpressed tumor cell imaging. The feasibility of the constructed NIR fluorescence probe in vivo application was further investigated and the results demonstrated its great potential for in vivo imaging. This developed protocol for phase transfer of the CIS/ZnS QDs was universal and applicable to other nanoparticles stabilized with hydrophobic ligands.


ACS Applied Materials & Interfaces | 2015

PHe-Induced Charge-Reversible NIR Fluorescence Nanoprobe for Tumor-Specific Imaging

Chunhong Dong; Zhongyun Liu; Lei Zhang; Weisheng Guo; Xue Li; Junqing Liu; Hanjie Wang; Jin Chang

Inspired by the specificity of acid tumor microenvironment, we constructed a flexible charge-reversible near-infrared (NIR) fluorescence nanoprobe in response to tumor extracellular pH (pHe) for effective tumor-specific imaging. The nanoprobe consists of an NIR-emitted CuInS2/ZnS quantum dot (CIS/ZS QDs) core and a tailored lauric acid and 2,3-dimethylmaleic anhydride modified ε-polylysine (ε-PL-g-LA/DMA) shell, which provides not only a dense protective layer for the QDs but also the ability of pHe-induced positive charge-mediated endocytosis into tumor cells. The results showed that the QDs@ε-PL-g-LA/DMA nanoprobe with a uniform size of 40 nm had high chemical stability at pH 7.4 and excellent optical properties. Especially, it swiftly reversed its surface charge to positive in 20 min when exposed to pHe due to the cleavage of the β-carboxyl amide bond of ε-PL-g-LA/DMA. Moreover, the cell uptake of the pHe-sensitive QDs nanoprobe exposed at pH 6.8 into HeLa cells is much more significant than that at pH 7.4, which further verified the availability of the electrostatic adsorptive endocytosis facilitated targeting ability. The pHe-induced targeting imparted the QDs nanoprobe a broad targeting ability in a variety of solid tumors. Furthermore, as an effective alternative mechanism for tumor targeting, responsive charge reversion is also universally applicable to other cancer theranostics agent.


ACS Applied Materials & Interfaces | 2016

Reverse Fluorescence Enhancement and Colorimetric Bimodal Signal Readout Immunochromatography Test Strip for Ultrasensitive Large-Scale Screening and Postoperative Monitoring.

Yingyi Yao; Weisheng Guo; Jian Zhang; Yudong Wu; Weihua Fu; Tingting Liu; Xiaoli Wu; Hanjie Wang; Xiaoqun Gong; Xing-Jie Liang; Jin Chang

Ultrasensitive and quantitative fast screening of cancer biomarkers by immunochromatography test strip (ICTS) is still challenging in clinic. The gold nanoparticles (NPs) based ICTS with colorimetric readout enables a quick spectrum screening but suffers from nonquantitative performance; although ICTS with fluorescence readout (FICTS) allows quantitative detection, its sensitivity still deserves more efforts and attentions. In this work, by taking advantages of colorimetric ICTS and FICTS, we described a reverse fluorescence enhancement ICTS (rFICTS) with bimodal signal readout for ultrasensitive and quantitative fast screening of carcinoembryonic antigen (CEA). In the presence of target, gold NPs aggregation in T line induced colorimetric readout, allowing on-the-spot spectrum screening in 10 min by naked eye. Meanwhile, the reverse fluorescence enhancement signal enabled more accurately quantitative detection with better sensitivity (5.89 pg/mL for CEA), which is more than 2 orders of magnitude lower than that of the conventional FICTS. The accuracy and stability of the rFICTS were investigated with more than 100 clinical serum samples for large-scale screening. Furthermore, this rFICTS also realized postoperative monitoring by detecting CEA in a patient with colon cancer and comparing with CT imaging diagnosis. These results indicated this rFICTS is particularly suitable for point-of-care (POC) diagnostics in both resource-rich and resource-limited settings.


ACS Applied Materials & Interfaces | 2017

Transferrin-Dressed Virus-like Ternary Nanoparticles with Aggregation-Induced Emission for Targeted Delivery and Rapid Cytosolic Release of siRNA

Tingbin Zhang; Weisheng Guo; Chunqiu Zhang; Jing Yu; Jing Xu; Shuyi Li; Jian-Hua Tian; Paul C. Wang; Jinfeng Xing; Xing-Jie Liang

Viruses have evolved to be outstandingly efficient at gene delivery, but their use as vectors is limited by safety risks. Inspired by the structure of viruses, we constructed a virus-mimicking vector (denoted as TR4@siRNA@Tf NCs) with virus-like architecture and infection properties. Composed of a hydrophilic peptide, an aggregation-induced emission (AIE) luminogen, and a lipophilic tail, TR4 imitates the viral capsid and endows the vector with AIE properties as well as efficient siRNA compaction. The outer glycoprotein transferrin (Tf) mimics the viral envelope protein and endows the vector with reduced cytotoxicity as well as enhanced targeting capability. Because of the strong interaction between Tf and transferrin receptors on the cell surface, the Tf coating can accelerate the intracellular release of siRNA into the cytosol. Tf and TR4 are eventually cycled back to the cell membrane. Our results confirmed that the constructed siRNA@TR4@Tf NCs show a high siRNA silencing efficiency of 85% with significantly reduced cytotoxicity. These NCs have comparable transfection ability to natural viruses while avoiding the toxicity issues associated with typical nonviral vectors. Therefore, this proposed virus-like siRNA vector, which integrates the advantages of both viral and nonviral vectors, should find many potential applications in gene therapy.

Collaboration


Dive into the Weisheng Guo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xing-Jie Liang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge