Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weiting Xu is active.

Publication


Featured researches published by Weiting Xu.


Materials | 2016

Pozzolanic Reactivity of Silica Fume and Ground Rice Husk Ash as Reactive Silica in a Cementitious System: A Comparative Study

Weiting Xu; Tommy Y. Lo; Weilun Wang; Dong Ouyang; Penggang Wang; Feng Xing

This study comparably assessed the pozzolanic effect of silica fume (SF) and ground rice husk ash (RHA) as supplementary cementing materials on the properties of blended cement pastes and concretes. A commonly commercial silica fume (SF) and locally-produced rice husk ash (RHA) samples with two finenesses (one with larger size than cement and the other with smaller size than cement) were used in this study. Material properties of SF and RHA were experimentally characterized. Hydration and mechanical properties of cement pastes incorporating SF and RHA were determined by thermogravimetric analysis (TGA) and compressive strength tests, respectively. Properties of concretes regarding workability, mechanical property, durability, and microstructure were evaluated. Results showed that, although the finely ground RHA used in this study possessed lower SiO2 content and higher particle size compared to SF, it exhibited comparable pozzolanic reactivity with SF due to the nano-scale pores on its each single particle, leading to a higher specific surface area. The optimal replacement levels of SF and RHA were 10% by weight of cement in pastes and concretes. Although addition of SF and RHA led to a significant reduction in slump for the fresh mixtures, inclusion of up to 30% of SF or 15% of ground RHA did not adversely affect the strength of concretes. At the same mix, incorporation of finely-ground RHA in cement composites provided comparable mechanical properties, hydration degree, and durability with SF blended cement composites, owing to the porous structure and high specific surface area of RHA particles. Microstructure morphology analysis of concretes explored by scanning electron microscopy (SEM) further validated the strength and the durability test results.


Materials | 2015

Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

Hongfang Sun; Zishanshan Li; Jing Bai; Shazim Ali Memon; Biqin Dong; Yuan Fang; Weiting Xu; Feng Xing

Calcium carbide residue (CCR) is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH)2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP). The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength) with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement) pastes was also examined through SEM (scanning electron microscope). Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.


Materials | 2015

Influence of Ultrafine 2CaO·SiO2 Powder on Hydration Properties of Reactive Powder Concrete

Hongfang Sun; Zishanshan Li; Shazim Ali Memon; Qiwu Zhang; Yaocheng Wang; Bing Liu; Weiting Xu; Feng Xing

In this research, we assessed the influence of an ultrafine 2CaO·SiO2 powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO2. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO2 powder has the potential to improve the performance of a reactive powder cementitious system.


Materials | 2015

Properties of Cement Mortar by Use of Hot-Melt Polyamides as Substitute for Fine Aggregate

Xiongzhou Yuan; Weiting Xu; Wei Sun; Feng Xing; Weilun Wang

This paper presents an experimental study on use of hot-melt polyamide (HMP) to prepare mortar specimens with improved crack healing and engineering properties. The role of HMP in the crack repairing of cement mortar subjected to several rounds of heat treatment was investigated. Compatibility between HMP and hydraulic cement was investigated through X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) technology. Mortar specimens were prepared using standard cement mortar mixes with HMP at 1%, 3% and 5% (by volume) for fine aggregate substitute. After curing for 28 days, HMP specimens were subjected to heating at temperature of 160 °C for one, two, and three days and then natural cooling down to ambient temperature. Mechanical and durability properties of the heated HMP mortars were evaluated and compared with those of the corresponding mortars without heating. The microscopic observation of the interfacial transition zone (ITZ) of HMP mortar was conducted through environmental scanning electron microscopy (ESEM). Results reveal that incorporation of HMP improves the workability of the HMP/cement binder while leading to decrease in compressive strength and durability. The heated HMP mortars after exposure to heating for one, two, and three days exhibit no obvious change in compressive strength while presenting notable increase in flexural strength and durability compared with the corresponding mortars without heating. The XRD, FTIR and ESEM analyses indicate that no obvious chemical reaction occurs between HMP and hydraulic cement, and thus the self-repairing for interfacial micro-crack in HMP/cement composite system is ascribed to the physical adhesion of HMP to cement matrix rather than the chemical bonding between them.


Construction and Building Materials | 2012

Microstructure and reactivity of rich husk ash

Weiting Xu; Tommy Y. Lo; Shazim Ali Memon


Construction and Building Materials | 2012

Effect of lightweight aggregates on the mechanical properties and brittleness of lightweight aggregate concrete

Hongzhi Cui; Tommy Y. Lo; Shazim Ali Memon; Weiting Xu


Energy and Buildings | 2013

Development of form-stable composite phase change material by incorporation of dodecyl alcohol into ground granulated blast furnace slag

Shazim Ali Memon; Tommy Y. Lo; Salim Barbhuiya; Weiting Xu


Composites Part A-applied Science and Manufacturing | 2015

Recycling of carbon fibers from carbon fiber reinforced polymer using electrochemical method

Hongfang Sun; Guanping Guo; Shazim Ali Memon; Weiting Xu; Qiwu Zhang; Ji Hua Zhu; Feng Xing


Construction and Building Materials | 2011

Increasing mortar strength with the use of activated kaolin by-products from paper industry

Dong Ouyang; Weiting Xu; Tommy Y. Lo; Janet F.C. Sham


Insight | 2010

Application of flash thermography for crack identification in concrete materials

F.C. Sham; Weiting Xu; Tommy Y. Lo

Collaboration


Dive into the Weiting Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tommy Y. Lo

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge