Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weiwei Ma is active.

Publication


Featured researches published by Weiwei Ma.


Bioresource Technology | 2017

Enhanced nitrogen removal from coal gasification wastewater by simultaneous nitrification and denitrification (SND) in an oxygen-limited aeration sequencing batch biofilm reactor

Weiwei Ma; Yuxing Han; Wencheng Ma; Hongjun Han; Hao Zhu; Chunyan Xu; Kun Li; Dexin Wang

Simultaneous nitrification and denitrification (SND) for treating coal gasification wastewater (CGW) was achieved successfully in a lab-scale sequencing batch biofilm reactor (SBBR) by oxygen-limited aeration. SND efficiency increased gradually with the concentration of dissolved oxygen (DO) decreased from 4.5mg/L to 0.35mg/L. The maximum SND efficiency of 81.23% was obtained at DO concentration of 0.35mg/L, and the corresponding removal efficiency of NH4+-N and TN reached 76.91% and 70.23%, respectively. Meanwhile, COD was removed significantly and toxic compounds were degraded into biodegradable substances, which relieved effectively the inhibition on nitrogen removal. The results indicated that oxygen-limited condition performed greater toxic compounds and nitrogen removal compared with the aerobic condition. Furthermore, the results of scanning electron microscopic (SEM) and microbial community structure confirmed robust biofilm formation provided a suitable anoxic micro-environment for co-existence of nitrifying and denitrifying bacteria and organics degradation bacteria in the reactor at oxygen-limited condition.


Bioresource Technology | 2017

Removal of selected nitrogenous heterocyclic compounds in biologically pretreated coal gasification wastewater (BPCGW) using the catalytic ozonation process combined with the two-stage membrane bioreactor (MBR).

Hao Zhu; Yuxing Han; Wencheng Ma; Hongjun Han; Weiwei Ma

Three identical anoxic-aerobic membrane bioreactors (MBRs) were operated in parallel for 300 consecutive days for raw (R1), ozonated (R2) and catalytic ozonated (R3) biologically pretreated coal gasification wastewater (BPCGW) treatment. The results demonstrated that catalytic ozonation process (COP) applied asa pretreatment remarkably improved the performance of the unsatisfactory single MBR. The overall removal efficiencies of COD, NH3-N and TN in R3 were 92.7%, 95.6% and 80.6%, respectively. In addition, typical nitrogenous heterocyclic compounds (NHCs) of quinoline, pyridine and indole were completely removed in the integrated process. Moreover, COP could alter sludge properties and reshape microbial community structure, thus delaying the occurrence of membrane fouling. Finally, the total cost for this integrated process was estimated to be lower than that of single MBR. The results of this study suggest that COP is a good option to enhance pollutants removal and alleviate membrane fouling in the MBR for BPCGW treatment.


Bioresource Technology | 2018

Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition

Weiwei Ma; Yuxing Han; Chunyan Xu; Hongjun Han; Wencheng Ma; Hao Zhu; Kun Li; Dexin Wang

The aim of this work was to study an integration of micro-electrolysis with biological reactor (MEBR) for strengthening removal of phenolic compounds in coal gasification wastewater (CGW). The results indicated MEBR achieved high efficiencies in removal of COD and phenolic compounds as well as improvement of biodegradability of CGW under the micro-oxygen condition. The integrated MEBR process was more favorable to improvement of the structural stability of activated sludge and biodiversity of specific functional microbial communities. Especially, Shewanella and Pseudomonas were enriched to accelerate the extracellular electron transfer, finally facilitating the degradation of phenolic compounds. Moreover, MEBR process effectively relieved passivation of Fe-C filler surface and prolonged lifespan of Fe-C filler. Accordingly, the synergetic effect between iron-carbon micro-electrolysis (ICME) and biological action played a significant role in performance of the integrated process. Therefore, the integrated MEBR was a promising practical process for enhancing CGW treatment.


Bioresource Technology | 2018

New insights into enhanced anaerobic degradation of coal gasification wastewater (CGW) with the assistance of graphene

Hao Zhu; Yuxing Han; Wencheng Ma; Hongjun Han; Weiwei Ma; Chunyan Xu

The up-flow anaerobic sludge blanket (UASB) system with graphene assisted was developed for coal gasification wastewater (CGW) treatment. Short-term results showed that optimal graphene addition (0.5 g/L) resulted in a more significant enhancement of methane production and chemical oxygen demand (COD) removal compared with that of the optimal activated carbon addition (10.0 g/L). Long-term results demonstrated that COD removal efficiency and methane production rate with graphene assisted achieved 64.7% and 180.5 mL/d, respectively. In addition, graphene could promote microbes accumulation and enzymes activity, resulting in higher extracellular polymeric substances (EPS) and coenzyme F420 concentrations. X-ray Diffraction (XRD) analysis indicated that chemical of graphene changed insignificantly during the experiment. Meanwhile, with graphene assisted, cells were attached together to form microbial aggregates to facilitate sludge granulation process. Furthermore, the enriched Geobacter and Pseudomonas might perform direct interspecies electron transfer (DIET) with Methanosaeta via biological electrical connection, enhancing the anaerobic degradation of CGW.


Bioresource Technology | 2018

Microbial nitrate removal in biologically enhanced treated coal gasification wastewater of low COD to nitrate ratio by coupling biological denitrification with iron and carbon micro-electrolysis

Zhengwen Zhang; Yuxing Han; Chunyan Xu; Wencheng Ma; Hongjun Han; Mengqi Zheng; Hao Zhu; Weiwei Ma

Mixotrophic denitrification coupled biological denitrification with iron and carbon micro-electrolysis (IC-ME) is a promising emerging bioprocess for nitrate removal of biologically enhanced treated coal gasification wastewater (BECGW) with low COD to nitrate ratio. TN removal efficiency in R1 with IC-ME assisted was 16.64% higher than R2 with scrap zero valent iron addition, 23.05% higher than R3 with active carbon assisted, 30.51% higher than R4 with only active sludge addition, 80.85% higher than R5 utilizing single IC-ME as control. Fe2+ generated from IC-ME decreased the production of N2O and enriched more Nitrate-reducing Fe(Ⅱ) oxidation bacteria (NRFOB) Acidovorax and Thiobacillus, which could convert nitrate to nitrogen gas. And the presence of Fe3+, as the Fe2+ oxidation product, could stimulate the growth of Fe(III)-reducing strain (FRB) that indicated by redundancy analysis. Microbial network analysis demonstrated FRB Geothrix had a co-occurrence relationship with other bacteria, revealing its dominant involvement in nitrate removal of BECGW.


Bioresource Technology | 2019

The mechanism of synergistic effect between iron-carbon microelectrolysis and biodegradation for strengthening phenols removal in coal gasification wastewater treatment

Weiwei Ma; Yuxing Han; Chunyan Xu; Hongjun Han; Dan Zhong; Hao Zhu; Kun Li

A novel iron-carbon microelectrolysis (ICME) inoculated with activated sludge (AS) process was specifically designed to look into the roles of microelectrolysis and biodegradation as well as their synergistic effect on phenols removal in coal gasification wastewater (CGW) treatment. The results indicated that the removal efficiency of COD, phenols and TOC in integrated ICME-AS process reached 87.36 ± 2.98%, 92.62 ± 0.76% and 84.45 ± 0.65%, respectively. Moreover, phenols-degrading bacteria and electrochemical-active bacteria presented better adaptability to phenolic impact. Meanwhile their syntrophic interaction was driven under the simulation of microelectrolysis. Furthermore, electrochemical redox efficiency was significantly improved, and the corresponding maximum power output reached 0.043 ± 0.01 mW/cm2. Apparently, the synergistic effect between microelectrolysis and biological action effectively strengthened phenols degradation and electricity generation. The results proved that the integrated ICME-AS process was a promising technology applied for CGW and other refractory industrial wastewater treatments.


Science of The Total Environment | 2018

Biotoxicity assessment and toxicity mechanism on coal gasification wastewater (CGW): A comparative analysis of effluent from different treatment processes

Weiwei Ma; Yuxing Han; Chunyan Xu; Hongjun Han; Hao Zhu; Kun Li; Mengqi Zheng

Even though coal gasification wastewater (CGW) treated by various biochemical treatment processes generally met the national discharge standard, its potential biotoxicity was still unknown. Therefore, in this study, bioassay with Tetrahymena thermophila (T. thermophila) was conducted to comprehensively evaluate the variation of biotoxicity in raw CGW and the treated effluent from lab-scale micro-electrolysis integrated with biological reactor (MEBR), single iron-carbon micro-electrolysis (ICME) and conventional activated sludge (CAS) processes. The results illustrated that raw CGW presented intensive acute toxicity with 24 h EC50 value of 8.401% and toxic unit (TU) value of 11.90. Moreover, it performed significant cell membrane destruction and DNA damage even at 10% dilution concentration. The toxicant identification results revealed that multiple toxic polar compounds such as phenolic, heterocyclic and polycyclic aromatic compounds were the main contributors for biotoxicity. Furthermore, these compounds could accelerate oxidative stress, thereby inducing oxidative damage of cell membrane and DNA. As for treated effluent, TU value was decreased by 90.58% in MEBR process. An effective biotoxicity reduction was achieved in MEBR process owing to high removal efficiency in polar organic toxicants. In contrast, effluent from ICME and CAS processes presented relatively high acute toxicity and genotoxicity, because various heterocyclic and polycyclic aromatic compounds were difficult to be degraded in these processes. Therefore, it was suggested that MEBR was a potential and feasible process for improving CGW treatment and minimizing ecological risk.


Journal of Environmental Management | 2018

Selective recovery of salt from coal gasification brine by nanofiltration membranes

Kun Li; Wencheng Ma; Hongjun Han; Chunyan Xu; Yuxing Han; Dexin Wang; Weiwei Ma; Hao Zhu

The selective extraction and concentration of salt from coal gasification brine (CGB) by nanofiltration membranes is a promising technology to achieve near-zero liquid discharge of coal gasification wastewater. To investigate the feasibility of recovery of salts and the interaction of organic compounds, multivalent ions and monovalent ions on the rejection ratio, three nanofiltration membranes (OWNF1, NF270 and Desal-5 DK) with an 1812 spiral-wound module were used in crossflow filtration. The rejection mechanism was analyzed by comparing the rejection performance as a function of the operation pressure (increasing from 1.0 MPa to 2.5 MPa), the concentration (increasing from 10,000 mg/L to 25,000 mg/L) and pH values (increasing from 3.0 to 10.0). The concentrations of anions and cations were determined using an ion chromatographic analyzer and an inductively coupled plasma emission spectrometer, respectively. The results show that the rejection of sulfate and the chemical oxygen demand were higher than 92.12% and 78.84%, respectively, at appropriate operation, while negative rejection of chloride was observed in the CGB. The decreasing rejection of organic compounds was due to swelling of the membrane pore in high-concentration solutions. Meanwhile, the organic compounds weakened the negative charge of the membrane active layer, consequently decreasing the ion rejection. More than 85% of the sodium chloride could be recovered, indicating that this technology is suitable for resource recovery from CGB and near-zero liquid discharge of coal gasification industry.


Chemosphere | 2018

Degradation characteristics of two typical N-heterocycles in ozone process: Efficacy, kinetics, pathways, toxicity and its application to real biologically pretreated coal gasification wastewater

Hao Zhu; Wencheng Ma; Hongjun Han; Chunyan Xu; Yuxing Han; Weiwei Ma

Ozonation of pyridine and indole was investigated both in aqueous solution and biologically pretreated coal gasification wastewater (BPCGW). Experimental results showed that the removal of indole was hardly affected by pH value. Direct reaction rate constant of ozone with pyridine increased from 0.18 M-1 s-1 (protonated pyridine) to 3.03 M-1 s-1 (molecular pyridine), and that with molecular indole was 8.6 × 105 M-1 s-1. Seven and five transformation intermediates were observed for pyridine and indole, respectively. Ozonation pathways were proposed as hydroxylation, opening and cleavage of the aromatic ring. It was found that ammonia nitrogen (NH3N) increased by 3.3 mg L-1 in ozone process, suggesting the broken of the CN bonds of pyridine, indole and other N-heterocyclic compounds. In terms of biochemical oxygen demand to chemical oxygen demand (BOD5/COD), toxicity and resazurin dehydrogenase activity (DHA), the biodegradability was improved after ozone treatment, indicating the possibility of ozone combined with biosystem for the treatment of BPCGW. The results of gas chromatograph and mass spectrometry (GC-MS) indicated that primary products during first 10 min might lead to the obstinate toxicity, which was further proved by US Environmental Protection Agency (US-EPA) test. This study would assist in obtaining a better understanding of the application of ozonation pretreatment in BPCGW.


Chemical Engineering Journal | 2017

Catalytic ozonation of quinoline using nano-MgO: Efficacy, pathways, mechanisms and its application to real biologically pretreated coal gasification wastewater

Hao Zhu; Wencheng Ma; Hongjun Han; Yuxing Han; Weiwei Ma

Collaboration


Dive into the Weiwei Ma's collaboration.

Top Co-Authors

Avatar

Hao Zhu

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hongjun Han

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yuxing Han

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chunyan Xu

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Wencheng Ma

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kun Li

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dexin Wang

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mengqi Zheng

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhengwen Zhang

Harbin Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge