Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weixia Sun is active.

Publication


Featured researches published by Weixia Sun.


Frontiers of Medicine in China | 2013

Zinc homeostasis in the metabolic syndrome and diabetes

Xiao Miao; Weixia Sun; Yaowen Fu; Lining Miao; Lu Cai

Zinc (Zn) is an essential mineral that is required for various cellular functions. Zn dyshomeostasis always is related to certain disorders such as metabolic syndrome, diabetes and diabetic complications. The associations of Zn with metabolic syndrome, diabetes and diabetic complications, thus, stem from the multiple roles of Zn: (1) a constructive component of many important enzymes or proteins, (2) a requirement for insulin storage and secretion, (3) a direct or indirect antioxidant action, and (4) an insulin-like action. However, whether there is a clear cause-and-effect relationship of Zn with metabolic syndrome, diabetes, or diabetic complications remains unclear. In fact, it is known that Zn deficiency is a common phenomenon in diabetic patients. Chronic low intake of Zn was associated with the increased risk of diabetes and diabetes also impairs Zn metabolism. Theoretically Zn supplementation should prevent the metabolic syndrome, diabetes, and diabetic complications; however, limited available data are not always supportive of the above notion. Therefore, this review has tried to summarize these pieces of available information, possible mechanisms by which Zn prevents the metabolic syndrome, diabetes, and diabetic complications. In the final part, what are the current issues for Zn supplementation were also discussed.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Therapeutic effect of MG-132 on diabetic cardiomyopathy is associated with its suppression of proteasomal activities: roles of Nrf2 and NF-κB

Yuehui Wang; Weixia Sun; Bing Du; Xiao Miao; Yang Bai; Ying Xin; Yi Tan; Wenpeng Cui; Bin Liu; Taixing Cui; Paul N. Epstein; Yaowen Fu; Lu Cai

MG-132, a proteasome inhibitor, can upregulate nuclear factor (NF) erythroid 2-related factor 2 (Nrf2)-mediated antioxidative function and downregulate NF-κB-mediated inflammation. The present study investigated whether through the above two mechanisms MG-132 could provide a therapeutic effect on diabetic cardiomyopathy in the OVE26 type 1 diabetic mouse model. OVE26 mice develop hyperglycemia at 2-3 wk after birth and exhibit albuminuria and cardiac dysfunction at 3 mo of age. Therefore, 3-mo-old OVE26 diabetic and age-matched control mice were intraperitoneally treated with MG-132 at 10 μg/kg daily for 3 mo. Before and after MG-132 treatment, cardiac function was measured by echocardiography, and cardiac tissues were then subjected to pathological and biochemical examination. Diabetic mice showed significant cardiac dysfunction, including increased left ventricular systolic diameter and wall thickness and decreased left ventricular ejection fraction with an increase of the heart weight-to-tibia length ratio. Diabetic hearts exhibited structural derangement and remodeling (fibrosis and hypertrophy). In diabetic mice, there was also increased systemic and cardiac oxidative damage and inflammation. All of these pathogenic changes were reversed by MG-132 treatment. MG-132 treatment significantly increased the cardiac expression of Nrf2 and its downstream antioxidant genes with a significant increase of total antioxidant capacity and also significantly decreased the expression of IκB and the nuclear accumulation and DNA-binding activity of NF-κB in the heart. These results suggest that MG-132 has a therapeutic effect on diabetic cardiomyopathy in OVE26 diabetic mice, possibly through the upregulation of Nrf2-dependent antioxidative function and downregulation of NF-κB-mediated inflammation.


American Journal of Physiology-endocrinology and Metabolism | 2013

Potential role for Nrf2 activation in the therapeutic effect of MG132 on diabetic nephropathy in OVE26 diabetic mice

Wenpeng Cui; Bing Li; Yang Bai; Xiao Miao; Qiang Chen; Weixia Sun; Yi Tan; Ping Luo; Chi Zhang; Shirong Zheng; Paul N. Epstein; Lining Miao; Lu Cai

Oxidative stress is a major cause of diabetic nephropathy. Upregulation of the key antioxidative transcription factor, nuclear factor-erythroid 2-related factor 2 (Nrf2), was found to prevent the development of diabetic nephropathy. The present study was designed to explore the therapeutic effect of Nrf2 induced by proteasomal inhibitor MG132 at a low dose (10 μg/kg) on diabetic nephropathy. Transgenic type 1 diabetic (OVE26) mice displayed renal dysfunction with albuminuria by 3 mo of age, at which time MG132 treatment was started. After 3-mo treatment with MG132, renal function, morphology, and biochemical changes were examined with real-time PCR, Western blotting, and immunohistochemical examination. Compared with age-matched, nontreated diabetic mice, MG132-treated diabetic mice showed significant improvements in terms of renal structural and functional alterations. These therapeutic effects were associated with increased Nrf2 expression and transcriptional upregulation of Nrf2-regulated antioxidants. Mechanistic study using human renal tubular HK11 cells confirmed the role of Nrf2, as silencing the Nrf2 gene with its specific siRNA abolished MG132 prevention of high-glucose-induced profibrotic response. Furthermore, diabetes was found to significantly increase proteasomal activity in the kidney, an effect that was significantly attenuated by 3 mo of treatment with MG132. These results suggest that MG132 upregulates Nrf2 function via inhibition of diabetes-increased proteasomal activity, which can provide the basis for the therapeutic effect of MG132 on the kidney against diabetes-induced oxidative damage, inflammation, fibrosis, and eventual dysfunction.


Nutrition & Metabolism | 2012

Sulforaphane prevention of diabetes-induced aortic damage was associated with the up-regulation of Nrf2 and its down-stream antioxidants

Xiao Miao; Yang Bai; Weixia Sun; Wenpeng Cui; Ying Xin; Yuehui Wang; Yi Tan; Lining Miao; Yaowen Fu; Guanfang Su; Lu Cai

BackgroundOxidative stress plays an important role in diabetes-induced vascular inflammation and pathogenesis. Nuclear factor E2-related factor-2 (Nrf2) is a transcription factor orchestrating antioxidant and cyto-protective responses to oxidative stress. In the present study, we tested whether sulforaphane (SFN) can protect the aorta from diabetes and, if so, whether the aortic protection is associated with up-regulation of Nrf2 and its down-stream antioxidants.MethodsType 1 diabetes was induced in FVB mice by multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with or without SFN at 0.5 mg/kg daily in five days of each week for three months. At the end of 3 months treatment of SFN one set of mice were sacrificed to perform the experimental measurements. The second set of both diabetic and control mice were aged for additional 3 months without further SFN treatment and then sacrificed to perform the experimental measurements. Aortas from these mice were assessed for fibrosis, inflammation, oxidative damage, and Nrf2 expression and transcription by immunohistochemical staining and real-time PCR method, respectively.ResultsDiabetes induced significant increases in oxidative stress and inflammation in the aorta at both 3 and 6 months, and fibrotic response at 6 months. SFN completely prevented these diabetic pathogenic changes and also significantly up-regulated the expression of Nrf2 and its down-stream antioxidants.ConclusionsThese results suggest that diabetes-induced aortic fibrosis, inflammation, and oxidative damage can be prevented by SFN. The aortic protection from diabetes by SFN was associated with the up-regulation of Nrf2 and its downstream antioxidants.


Cardiovascular Diabetology | 2013

Zinc protects against diabetes-induced pathogenic changes in the aorta: roles of metallothionein and nuclear factor (erythroid-derived 2)-like 2

Xiao Miao; Yonggang Wang; Jian Sun; Weixia Sun; Yi Tan; Lu Cai; Yang Zheng; Guanfang Su; Quan Liu; Yuehui Wang

BackgroundCardiovascular diseases remain a leading cause of the mortality world-wide, which is related to several risks, including the life style change and the increased diabetes prevalence. The present study was to explore the preventive effect of zinc on the pathogenic changes in the aorta.MethodsA genetic type 1 diabetic OVE26 mouse model was used with/without zinc supplementation for 3 months. To determine gender difference either for pathogenic changes in the aorta of diabetic mice or for zinc protective effects on diabetes-induced pathogenic changes, both males and females were investigated in parallel by histopathological and immunohistochemical examinations, in combination of real-time PCR assay.ResultsDiabetes induced significant increases in aortic oxidative damage, inflammation, and remodeling (increased fibrosis and wall thickness) without significant difference between genders. Zinc treatment of these diabetic mice for three months completely prevented the above pathogenic changes in the aorta, and also significantly up-regulated the expression and function of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a pivotal regulator of anti-oxidative mechanism, and the expression of metallothionein (MT), a potent antioxidant. There was gender difference for the protective effect of zinc against diabetes-induced pathogenic changes and the up-regulated levels of Nrf2 and MT in the aorta.ConclusionsThese results suggest that zinc supplementation provides a significant protection against diabetes-induced pathogenic changes in the aorta without gender difference in the type 1 diabetic mouse model. The aortic protection by zinc against diabetes-induced pathogenic changes is associated with the up-regulation of both MT and Nrf2 expression.


American Journal of Physiology-endocrinology and Metabolism | 2014

Sulforaphane reduction of testicular apoptotic cell death in diabetic mice is associated with the upregulation of Nrf2 expression and function

Yonggang Wang; Zhiguo Zhang; Weiying Guo; Weixia Sun; Xiao Miao; Hao Wu; Xianling Cong; Kupper A. Wintergerst; Xiangbo Kong; Lu Cai

Diabetes-induced testicular cell death is due predominantly to oxidative stress. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an important transcription factor in controlling the antioxidative system and is inducible by sulforaphane (SFN). To test whether SFN prevents diabetes-induced testicular cell death, an insulin-defective stage of type 2 diabetes (IDS-T2DM) was induced in mice. This was accomplished by feeding them a high-fat diet (HFD) for 3 mo to induce insulin resistance and then giving one intraperitoneal injection of streptozotocin to induce hyperglycemia while age-matched control mice were fed a normal diet (ND). IDS-T2DM and ND-fed control mice were then further subdivided into those with or without 4-mo SFN treatment. IDS-T2DM induced significant increases in testicular cell death presumably through receptor and mitochondrial pathways, shown by increased ratio of Bax/Bcl2 expression and cleavage of caspase-3 and caspase-8 without significant change of endoplasmic reticulum stress. Diabetes also significantly increased testicular oxidative damage and inflammation. All of these diabetic effects were significantly prevented by SFN treatment with upregulated Nrf2 expression. These results suggest that IDS-T2DM induces testicular cell death presumably through caspase-8 activation and mitochondria-mediated cell death pathways and also by significantly downregulating testicular Nrf2 expression and function. SFN upregulates testicular Nrf2 expression and its target antioxidant expression, which was associated with significant protection of the testis from IDS-T2DM-induced germ cell death.


Toxicology Mechanisms and Methods | 2013

The role of zinc in the prevention of diabetic cardiomyopathy and nephropathy

Bing Li; Yi Tan; Weixia Sun; Yaowen Fu; Lining Miao; Lu Cai

Zinc (Zn) is one of the essential trace elements and has numerous physiological functions. Zn acts as an antioxidant and also as a part of other antioxidant related proteins, such as metallothionein (MT) and Zn-copper superoxide dismutase. Zn deficiency often occurs in patients with diabetes. Therefore, the effect of Zn deficiency or Zn supplementation on diabetes-induced cardiac and renal pathogeneses has been explored. Diabetes was induced by streptozotocin (STZ) in mice and rats. Zn deficiency was induced by chronic treatment of diabetic mice with Zn chelator N,N,N,N-Tetrakis(2-pyridylmethyl)-1,2-ethylenediamine (TPEN) for 4 months. For Zn supplementation study, diabetic mice or rats were treated with Zn for 3 months. Inflammation, fibrosis, and histopathological changes in the heart and kidney of these diabetic mice and rats were examined by western blotting assay, immunohistochemical and fluorescent staining. Results showed that diabetes induced cardiac and renal oxidative damage, inflammation and fibrosis, which were reversed by Zn supplementation that also induced cardiac and renal MT synthesis. Furthermore, Zn deficiency was found to significantly enhance the renal damage induced by diabetes. Several clinical observations also support the preventive effect of Zn in the development of diabetic cardiomyopathy and nephropathy. Therefore, Zn plays an important role in the protection of the heart and kidney against diabetes-induced oxidative damage, inflammation, and fibrosis. These studies suggested that diabetic patients should be monitored and treated for Zn deficiency to avoid the acceleration of diabetes-induced cardiac and renal injury.


Toxicology Letters | 2015

Zinc treatment prevents type 1 diabetes-induced hepatic oxidative damage, endoplasmic reticulum stress, and cell death, and even prevents possible steatohepatitis in the OVE26 mouse model: Important role of metallothionein.

Tingting Liang; Quan Zhang; Weixia Sun; Ying Xin; Zhiguo Zhang; Yi Tan; Shanshan Zhou; Chi Zhang; Lu Cai; Xuemian Lu; Mingliang Cheng

Whether zinc is able to improve diabetes-induced liver injury remains unknown. Transgenic type 1 diabetic (OVE26) mice develop hyperglycemia at 3 weeks old; therefore therapeutic effect of zinc on diabetes-induced liver injury was investigated in OVE26 mice. Three-month old OVE26 and age-matched wild-type mice were treated by gavage with saline or zinc at 5mg/kg body-weight every other day for 3 months. Hepatic injury was examined by serum alanine aminotransferase (ALT) level with liver histopathological and biochemical changes. OVE26 mice at 6 months old showed significant increases in serum ALT level and hepatic oxidative damage, endoplasmic reticulum stress and associated cell death, mild inflammation, and fibrosis. However, all these hepatic morphological and functional changes were significantly prevented in 3-month zinc-treated OVE26 mice. Mechanistically, zinc treatment significantly increased hepatic metallothionein, a protein with known antioxidant activity, in both wild-type and OVE26 mice. These results suggest that there were significantly functional, structural and biochemical abnormalities in the liver of OVE26 diabetic mice at 6 months old; however, all these changes could be prevented with zinc treatment, which was associated with the upregulation of hepatic metallothionein expression.


Free Radical Biology and Medicine | 2016

Up-regulation of Nrf2 is involved in FGF21-mediated fenofibrate protection against type 1 diabetic nephropathy.

Yanli Cheng; Jingjing Zhang; Weiying Guo; Fengsheng Li; Weixia Sun; Jing Chen; Chi Zhang; Xuemian Lu; Yi Tan; Wenke Feng; Yaowen Fu; Gilbert C. Liu; Zhonggao Xu; Lu Cai

The lipid lowering medication, fenofibrate (FF), is a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, possessing beneficial effects for type 2 diabetic nephropathy (DN). We investigated whether FF can prevent the development of type 1 DN, and the underlying mechanisms. Diabetes was induced by a single intraperitoneal injection of streptozotocin in C57BL/6J mice. Mice were treated with oral gavage of FF at 100mg/kg every other day for 3 and 6 months. Diabetes-induced renal oxidative stress, inflammation, apoptosis, lipid and collagen accumulation, and renal dysfunction were accompanied by significant decrease in PI3K, Akt, and GSK-3β phosphorylation as well as an increase in the nuclear accumulation of Fyn [a negative regulator of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)]. All these adverse effects were significantly attenuated by FF treatment. FF also significantly increased fibroblast growth factor 21 (FGF21) expression and enhanced Nrf2 function in diabetic and non-diabetic kidneys. Moreover, FF-induced amelioration of diabetic renal damage, including the stimulation of PI3K/Akt/GSK-3β/Fyn pathway and the enhancement of Nrf2 function were abolished in FGF21-null mice, confirming the critical role of FGF21 in FF-induced renal protection. These results suggest for the first time that FF prevents the development of DN via up-regulating FGF21 and stimulating PI3K/Akt/GSK-3β/Fyn-mediated activation of the Nrf2 pathway.


Free Radical Biology and Medicine | 2014

Renal improvement by zinc in diabetic mice is associated with glucose metabolism signaling mediated by metallothionein and Akt, but not Akt2.

Weixia Sun; Yuehui Wang; Xiao Miao; Yonggang Wang; Li Zhang; Ying Xin; Shirong Zheng; Paul N. Epstein; Yaowen Fu; Lu Cai

Human epidemiological and animal studies have shown the beneficial effect of zinc supplementation on mitigating diabetic nephropathy. However, the mechanism by which zinc protects the kidney from diabetes remains unknown. Here we demonstrate the therapeutic effects of zinc on diabetes-induced renal pathological and functional changes. These abnormalities were found in both transgenic OVE26 and Akt2-KO diabetic mouse models, accompanied by significant changes in glucose-metabolism-related regulators. The changes included significantly decreased phosphorylation of Akt and GSK-3β, increased phosphorylation of renal glycogen synthase, decreased expression of hexokinase II and PGC-1α, and increased expression of the Akt negative regulators PTEN, PTP1B, and TRB3. All of these were significantly prevented by zinc treatment for 3 months. Furthermore, zinc-stimulated changes in glucose metabolism mediated by Akt were actually found to be metallothionein dependent, but not Akt2 dependent. These results suggest that the therapeutic effects of zinc in diabetic nephropathy are mediated, in part, by the preservation of glucose-metabolism-related pathways via the prevention of diabetes-induced upregulation of Akt negative regulators. Given that zinc deficiency is very common in diabetics, this finding implies that regularly monitoring zinc levels in diabetic patients, as well as supplementing if low, is important in mitigating the development of diabetic nephropathy.

Collaboration


Dive into the Weixia Sun's collaboration.

Top Co-Authors

Avatar

Lu Cai

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Yi Tan

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge