Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weixia Zhong is active.

Publication


Featured researches published by Weixia Zhong.


PLOS ONE | 2014

Serotonin 5-HT3 Receptor-Mediated Vomiting Occurs via the Activation of Ca2+/CaMKII-Dependent ERK1/2 Signaling in the Least Shrew (Cryptotis parva)

Weixia Zhong; Tarun E. Hutchinson; Seetha Chebolu; Nissar A. Darmani

Stimulation of 5-HT3 receptors (5-HT3Rs) by 2-methylserotonin (2-Me-5-HT), a selective 5-HT3 receptor agonist, can induce vomiting. However, downstream signaling pathways for the induced emesis remain unknown. The 5-HT3R channel has high permeability to extracellular calcium (Ca2+) and upon stimulation allows increased Ca2+ influx. We examined the contribution of Ca2+/calmodulin-dependent protein kinase IIα (Ca2+/CaMKIIα), interaction of 5-HT3R with calmodulin, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling to 2-Me-5-HT-induced emesis in the least shrew. Using fluo-4 AM dye, we found that 2-Me-5-HT augments intracellular Ca2+ levels in brainstem slices and that the selective 5-HT3R antagonist palonosetron, can abolish the induced Ca2+ signaling. Pre-treatment of shrews with either: i) amlodipine, an antagonist of L-type Ca2+ channels present on the cell membrane; ii) dantrolene, an inhibitor of ryanodine receptors (RyRs) Ca2+-release channels located on the endoplasmic reticulum (ER); iii) a combination of their less-effective doses; or iv) inhibitors of CaMKII (KN93) and ERK1/2 (PD98059); dose-dependently suppressed emesis caused by 2-Me-5-HT. Administration of 2-Me-5-HT also significantly: i) enhanced the interaction of 5-HT3R with calmodulin in the brainstem as revealed by immunoprecipitation, as well as their colocalization in the area postrema (brainstem) and small intestine by immunohistochemistry; and ii) activated CaMKIIα in brainstem and in isolated enterochromaffin cells of the small intestine as shown by Western blot and immunocytochemistry. These effects were suppressed by palonosetron. 2-Me-5-HT also activated ERK1/2 in brainstem, which was abrogated by palonosetron, KN93, PD98059, amlodipine, dantrolene, or a combination of amlodipine plus dantrolene. However, blockade of ER inositol-1, 4, 5-triphosphate receptors by 2-APB, had no significant effect on the discussed behavioral and biochemical parameters. This study demonstrates that Ca2+ mobilization via extracellular Ca2+ influx through 5-HT3Rs/L-type Ca2+ channels, and intracellular Ca2+ release via RyRs on ER, initiate Ca2+-dependent sequential activation of CaMKIIα and ERK1/2, which contribute to the 5-HT3R-mediated, 2-Me-5-HT-evoked emesis.


Pharmacology, Biochemistry and Behavior | 2015

Differential and additive suppressive effects of 5-HT3 (palonosetron)- and NK1 (netupitant)-receptor antagonists on cisplatin-induced vomiting and ERK1/2, PKA and PKC activation

Nissar A. Darmani; Weixia Zhong; Seetha Chebolu; Frank Mercadante

To better understand the anti-emetic profile of the 5-HT3 (palonosetron)- and the tachykinin NK1 (netupitant) -receptor antagonists, either alone or in combination, we evaluated the effects of palonosetron and/or netupitant pretreatment on cisplatin-evoked vomiting and changes in the phosphorylation of brainstem kinases such as the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), protein kinase C alpha/beta (PKCα/β), and protein kinase A (PKA) in the least shrew. Our results demonstrate that cisplatin (10mg/kg, i.p.) causes emesis in the least shrew over 40h with respective peak early- and delayed-phases occurring at 1 - 2 and 32 - 34h post-injection. During the early phase (0 - 16h post cisplatin), palonosetron (0.1mg/kg, s.c.) significantly protected shrews from vomiting with a near complete suppression of vomit frequency. Palonosetron also significantly protected shrews from vomiting during the delayed phase (27 - 40h post cisplatin), but the reduction in mean vomit frequency failed to achieve significance. On the other hand, netupitant (5mg/kg, i.p.) totally abolished vomiting during the delayed phase, and tended to suppress the mean vomit frequency during the acute phase. The combined treatment protected shrews almost completely from vomiting during both phases. Brainstem pERK1/2 levels were significantly elevated at all time-points except at 40h post-cisplatin administration. PKA phosphorylation tended to be elevated throughout the delayed phase, but a significant increase only occurred at 33h. Brainstem pPKCα/β levels were enhanced during acute-phase with a significant elevation at 2h. Palonosetron, netupitant or their combination had no effect on elevated pERK1/2 levels during acute phase, but the combination reversed ERK1/2 phosphorylation at 33h post-cisplatin treatment. In addition, only the combined regimen prevented the cisplatin-induced PKCα/β phosphorylation observed at the acute phase. On the other hand, palonosetron and netupitant, either alone or in combination, were effective in reducing the induced elevated pPKA levels during the delayed phase. These effects on cisplatin-related emetic signals downstream of 5-HT3- and NK1-receptors help us to better understand the intracellular basis of cisplatin-induced vomiting.


Neuropharmacology | 2016

Thapsigargin-induced activation of Ca2+-CaMKII-ERK in brainstem contributes to substance P release and induction of emesis in the least shrew

Weixia Zhong; Seetha Chebolu; Nissar A. Darmani

Cytoplasmic calcium (Ca(2+)) mobilization has been proposed to be an important factor in the induction of emesis. The selective sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin, is known to deplete intracellular Ca(2+) stores, which consequently evokes extracellular Ca(2+) entry through cell membrane-associated channels, accompanied by a prominent rise in cytosolic Ca(2+). A pro-drug form of thapsigargin is currently under clinical trial as a targeted cancer chemotherapeutic. We envisioned that the intracellular effects of thapsigargin could cause emesis and planned to investigate its mechanisms of emetic action. Indeed, thapsigargin did induce vomiting in the least shrew in a dose-dependent and bell-shaped manner, with maximal efficacy (100%) at 0.5 mg/kg (i.p.). Thapsigargin (0.5 mg/kg) also caused increases in c-Fos immunoreactivity in the brainstem emetic nuclei including the area postrema (AP), nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMNX), as well as enhancement of substance P (SP) immunoreactivity in DMNX. In addition, thapsigargin (0.5 mg/kg, i.p.) led to vomit-associated and time-dependent increases in phosphorylation of Ca(2+)/calmodulin kinase IIα (CaMKIIα) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) in the brainstem. We then explored the suppressive potential of diverse chemicals against thapsigargin-evoked emesis including antagonists of: i) neurokinin-1 receptors (netupitant), ii) the type 3 serotonin receptors (palonosetron), iii) store-operated Ca(2+) entry (YM-58483), iv) L-type Ca(2+) channels (nifedipine), and v) SER Ca(2+)-release channels inositol trisphosphate (IP3Rs) (2-APB)-, and ryanodine (RyRs) (dantrolene)-receptors. In addition, the antiemetic potential of inhibitors of CaMKII (KN93) and ERK1/2 (PD98059) were investigated. All tested antagonists/blockers attenuated emetic parameters to varying degrees except palonosetron, however a combination of non-effective doses of netupitant and palonosetron exhibited additive antiemetic efficacy. A low-dose combination of nifedipine and 2-APB plus dantrolene mixture completely abolished thapsigargin-evoked vomiting, CaMKII-ERK1/2 activation and SP elevation. In addition, pretreatment with KN93 or PD98059 suppressed thapsigargin-induced increases in SP and ERK1/2 activation. Intracerebroventricular injection of netupitant suppressed vomiting caused by thapsigargin which suggests that the principal site of evoked emesis is the brainstem. In sum, this is the first study to demonstrate that thapsigargin causes vomiting via the activation of the Ca(2+)-CaMKII-ERK1/2 cascade, which is associated with an increase in the brainstem tissue content of SP, and the evoked emesis occurs through SP-induced activation of neurokinin-1 receptors.


European Journal of Pharmacology | 2015

L-type calcium channels contribute to 5-HT3-receptor-evoked CaMKIIα and ERK activation and induction of emesis in the least shrew (Cryptotis parva).

Tarun E. Hutchinson; Weixia Zhong; Seetha Chebolu; Sean M. Wilson; Nissar A. Darmani

Activation of serotonergic 5-HT3 receptors by its selective agonist 2-methyl serotonin (2-Me-5-HT) induces vomiting, which is sensitive to selective antagonists of both 5-HT3 receptors (palonosetron) and L-type calcium channels (LTCC) (amlodipine or nifedipine). Previously we demonstrated that 5-HT3 receptor activation also causes increases in a palonosetron-sensitive manner in: i) intracellular Ca(2+) concentration, ii) attachment of calmodulin (CaM) to 5-HT3 receptor, and iii) phosphorylation of Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) and extracellular-signal-regulated kinase 1/2 (ERK1/2). Here, we investigate the role of the short-acting LTCC blocker nifedipine on 2-Me-5-HT-evoked intracellular Ca(2+) increase and on downstream intracellular emetic signaling, which have been shown to be coupled with 2-Me-5-HT׳s emetic effects in the least shrew. Using the cell-permeant Ca(2+) indicator fluo-4 AM, here we present evidence for the contribution of Ca(2+) influx through LTCCs (sensitive to nifedipine) in 2-Me-5-HT (1µM) -evoked rise in cytosolic Ca(2+) levels in least shrew brainstem slices. Nifedipine pretreatment (10mg/kg, s.c.) also suppressed 2-Me-5-HT-evoked interaction of 5-HT3 receptors with CaM as well as phosphorylation of CaMKIIα and ERK1/2 in the least shrew brainstem, and 5-HT3 receptors -CaM colocalization in jejunum of the small intestine. In vitro exposure of isolated enterochromaffin cells of the small intestine to 2-Me-5-HT (1µM) caused CaMKIIα phosphorylation, which was also abrogated by nifedipine pretreatment (0.1µM). In addition, pretreatment with the CaMKII inhibitor KN62 (10mg/kg, i.p.) suppressed emesis and also the activation of CaMKIIα, and ERK in brainstem caused by 2-Me-5-HT (5mg/kg, i.p.). This study provides further mechanistic explanation for our published findings that nifedipine can dose-dependently protect shrews from 2-Me-5-HT-induced vomiting.


Pharmacology, Biochemistry and Behavior | 2014

Broad-spectrum antiemetic efficacy of the l-type calcium channel blocker amlodipine in the least shrew (Cryptotis parva)

Weixia Zhong; Seetha Chebolu; Nissar A. Darmani

The dihydropyridine l-type calcium (Ca(2+)) channel blockers nifedipine and amlodipine reduce extracellular Ca(2+) entry into cells. They are widely used for the treatment of hypertensive disorders. We have recently demonstrated that extracellular Ca(2+) entry via l-type Ca(2+) channels is involved in emesis and that nifedipine has broad-spectrum antiemetic activity. The aim of this study was to evaluate the antiemetic efficacy of the longer-acting l-type Ca(2+) channel blocker, amlodipine. Fully effective emetic doses of diverse emetogens such as the l-type Ca(2+) channel agonist (FPL 64176) as well as selective and/or nonselective agonists of serotonergic 5-HT3 (e.g. 5-HT or 2-Me-5-HT)-, dopamine D2 (e.g. apomorphine or quinpirole)-, cholinergic M1 (e.g. pilocarpine or McN-A343)- and tachykininergic NK1 (e.g. GR73632)-receptors, were administered intraperitoneally (i.p.) in the least shrew to induce vomiting. The broad-spectrum antiemetic potential of amlodipine was evaluated against these emetogens. Subcutaneous (s.c.) administration of amlodipine (0.5-10mg/kg) attenuated in a dose-dependent and potent manner both the frequency and percentage of shrews vomiting in response to intraperitoneal (i.p.) administration of FPL 64176 (10mg/kg), 5-HT (5mg/kg), 2-Me-5-HT (5mg/kg), apomorphine (2mg/kg), quinpirole (2mg/kg), pilocarpine (2mg/kg), McN-A343 (2mg/kg), or GR73632 (5mg/kg). A combination of non-effective doses of amlodipine (0.5mg/kg, s.c.) and the 5-HT3 receptor antagonist palonosetron (0.05 mg/kg, s.c.) was more effective against FPL 64176-induced vomiting than their corresponding doses tested alone. Amlodipine by itself suppressed the frequency of acute cisplatin (10mg/kg, i.p)-induced vomiting in a dose-dependent manner. Moreover, a combination of a non-effective dose of amlodipine (1mg/kg) potentiated the antiemetic efficacy of a semi-effective dose of palonosetron (0.5mg/kg, s.c.) against acute vomiting caused by cisplatin. We confirm that influx of extracellular Ca(2±) ion underlies vomiting due to diverse causes and demonstrate that l-type Ca(2+) channel blockers are a new class of broad-spectrum antiemetics.


European Journal of Pharmacology | 2014

Additive antiemetic efficacy of low-doses of the cannabinoid CB1/2 receptor agonist Δ9-THC with ultralow-doses of the vanilloid TRPV1 receptor agonist resiniferatoxin in the least shrew (Cryptotis parva)

Nissar A. Darmani; Seetha Chebolu; Weixia Zhong; Chung Trinh; Bryan McClanahan; Rajivinder Singh Brar

Previous studies have shown that cannabinoid CB1/2 and vanilloid TRPV1 agonists (delta-9-tetrahydrocannabinol (Δ(9)-THC) and resiniferatoxin (RTX), respectively) can attenuate the emetic effects of chemotherapeutic agents such as cisplatin. In this study we used the least shrew to demonstrate whether combinations of varying doses of Δ(9)-THC with resiniferatoxin can produce additive antiemetic efficacy against cisplatin-induced vomiting. RTX by itself caused vomiting in a bell-shaped dose-dependent manner with maximal vomiting at 18 μg/kg when administered subcutaneously (s.c.) but not intraperitoneally (i.p.). Δ(9)-THC up to 10 mg/kg provides only 80% protection of least shrews from cisplatin-induced emesis with an ID50 of 0.3-1.8 mg/kg. Combinations of 1 or 5 μg/kg RTX with varying doses of Δ(9)-THC completely suppressed both the frequency and the percentage of shrews vomiting with ID50 dose values 5-50 times lower than Δ(9)-THC doses tested alone against cisplatin. A less potent TRPV1 agonist, capsaicin, by itself did not cause emesis (i.p. or s.c.), but it did significantly reduce vomiting induced by cisplatin given after 30 min but not at 2 h. The TRPV1-receptor antagonist, ruthenium red, attenuated cisplatin-induced emesis at 5mg/kg; however, another TRPV1-receptor antagonist, capsazepine, did not. In summary, we present evidence that combination of CB1/2 and TRPV1 agonists have the capacity to completely abolish cisplatin-induced emesis at doses that are ineffective when used individually.


European Journal of Pharmacology | 2017

The anti-asthmatic drug pranlukast suppresses the delayed-phase vomiting and reverses intracellular indices of emesis evoked by cisplatin in the least shrew (Cryptotis parva)

Nissar A. Darmani; Seetha Chebolu; Weixia Zhong; William D. Kim; Matthew Narlesky; Joia Adams; Fanglong Dong

&NA; The introduction of second generation serotonin 5‐HT3 receptor (5‐HT3) antagonist palonosetron combined with long‐acting substance P neurokinin NK1 receptor (NK1) antagonists (e.g. netupitant) has substantially improved antiemetic therapy against early‐ and delayed‐phases of emesis caused by highly emetogenic chemotherapeutics such as cisplatin. However, the improved efficacy comes at a cost that many patients cannot afford. We introduce a new class of antiemetic, the antiasthmatic leukotriene CysLT1 receptor antagonist pranlukast for the suppression of cisplatin‐evoked vomiting. Pranlukast (10 mg/kg) by itself significantly reduced the mean frequency of vomits (70%) and fully protected least shrews from vomiting (46%) during the delayed‐phase of cisplatin (10 mg/kg)‐evoked vomiting. Although, pranlukast tended to substantially reduce both the mean frequency of vomits and the number of shrews vomiting during the early‐phase, these reductions failed to attain significance. When combined with a first (tropisetron)‐ or a second (palonosetron)‐generation 5‐HT3 receptor antagonist, pranlukast potentiated their antiemetic efficacy during both phases of vomiting. In addition, pranlukast by itself prevented several intracellular signal markers of cisplatin‐evoked delayed‐vomiting such as phosphorylation of ERK1/2 and PKA. When pranlukast was combined with either palonosetron or tropisetron, these combinations suppressed the evoked phosphorylation of: i) ERK1/2 during both acute‐ and delayed‐phase, ii) PKC&agr;/&bgr; at the peak acute‐phase, and iii) PKA at the peak delayed‐phase. The current and our published findings suggest that overall behavioral and intracellular signaling effects of pranlukast via blockade of CysLT1 receptors generally appear to be similar to the NK1 receptor antagonist netupitant with some differences.


Autonomic Neuroscience: Basic and Clinical | 2017

Ca2+ signaling and emesis: Recent progress and new perspectives

Weixia Zhong; Andrew J. Picca; Albert S. Lee; Nissar A. Darmani

Cisplatin-like chemotherapeutics cause vomiting via calcium (Ca2+)-dependent release of multiple neurotransmitters (dopamine, serotonin, substance P, etc.) from the gastrointestinal enterochromaffin cells and/or the brainstem. Intracellular Ca2+ signaling is triggered by activation of diverse emetic receptors (including tachykininergic NK1, serotonergic 5-HT3, dopaminergic D2, cholinergic M1, or histaminergic H1), whose activation in vomit-competent species can evoke emesis. Other emetogens such as cisplatin, rotavirus NSP4 protein and bacterial toxins can also induce intracellular Ca2+ elevation. Netupitant is a highly selective neurokinin NK1 receptor (NK1R) antagonist and palonosetron is a selective second-generation serotonin 5-HT3 receptor (5-HT3R) antagonist with a distinct pharmacological profile. An oral fixed combination of netupitant/palonosetron (NEPA; Akynzeo(®)) with >85% antiemetic efficacy is available for use in the prevention of acute and delayed chemotherapy-induced nausea and vomiting (CINV). Cannabinoid CB1 receptor agonists possess broad-spectrum antiemetic activity since they prevent vomiting caused by a variety of emetic stimuli including the chemotherapeutic agent cisplatin, 5-HT3R agonists, and D2R agonists. Our findings demonstrate that application of the L-type Ca2+ channel (LTCC) agonist FPL 64176 and the intracellular Ca2+ mobilizing agent thapsigargin (a sarco/endoplasmic reticulum Ca2+-ATPase inhibitor) cause vomiting in the least shrew. On the other hand, blockade of LTCCs by corresponding antagonists (nifedipine or amlodipine) not only provide broad-spectrum antiemetic efficacy against diverse agents that specifically activate emetogenic receptors such as 5-HT3, NK1, D2, and M1 receptors, but can also potentiate the antiemetic efficacy of palonosetron against the non-specific emetogen, cisplatin. In this review, we will provide an overview of Ca2+ involvement in the emetic process; discuss the relationship between Ca2+ signaling and the prevailing therapeutics in control of vomiting; highlight the evidence for Ca2+-signaling blockers/inhibitors in suppressing emetic behavior in the least shrew model of emesis as well as in the clinical setting; and also draw attention to the clinical benefits of Ca2+-signaling blockers/inhibitors in the treatment of nausea and vomiting.


European Journal of Pharmacology | 2018

Intracellular emetic signaling evoked by the L-type Ca2+ channel agonist FPL64176 in the least shrew (Cryptotis parva)

Weixia Zhong; Seetha Chebolu; Nissar A. Darmani

ABSTRACT Ca2+ plays a major role in maintaining cellular homeostasis and regulates processes including apoptotic cell death and side‐effects of cancer chemotherapy including vomiting. Currently we explored the emetic mechanisms of FPL64176, an L‐type Ca2+ channel (LTCC) agonist with maximal emetogenic effect at its 10mg/kg dose. FPL64176 evoked c‐Fos immunoreactivity in shrew brainstem sections containing the vomit‐associated nuclei, nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus. FPL64176 also increased phosphorylation of proteins ERK1/2, PKC&agr;/&bgr;II and Akt in the brainstem. Moreover, their corresponding inhibitors (PD98059, GF 109203X and LY294002, respectively) reduced FPL64176‐evoked vomiting. A 30min subcutaneous (s.c.) pretreatment with the LTCC antagonist nifedipine (10mg/kg) abolished FPL64176‐elicited vomiting, c‐Fos expression, and emetic effector phosphorylation. Ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP3Rs) mediate intracellular Ca2+ release from the sarcoplasmic/endoplasmic reticulum. The RyR antagonist dantrolene (i.p.), or a combination of low doses of nifedipine and dantrolene, but not the IP3R antagonist 2‐APB, significantly attenuated FPL64176‐induced vomiting. The serotonin type 3 receptor (5‐HT3R) antagonist palonosetron (s.c.), the neurokinin 1 receptor (NK1R) antagonist netupitant (i.p.) or a combination of non‐effective doses of netupitant and palonosetron showed antiemetic potential against FPL64176‐evoked vomiting. Serotonin (5‐HT) and substance P immunostaining revealed FPL64176‐induced emesis was accompanied by an increase in 5‐HT but not SP‐immunoreactivity in the dorsomedial subdivision of the NTS. These findings demonstrate that Ca2+ mobilization through LTCCs and RyRs, and subsequent emetic effector phosphorylation and 5‐HT release play important roles in FPL64176‐induced emesis which can be prevented by 5‐HT3R and NK1R antagonists.


Gastro - Open Journal | 2015

Role of Calcium in Vomiting: Revelations from the Least Shrew Model of Emesis

Nissar A. Darmani; Weixia Zhong

Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA *Corresponding author Nissar A. Darmani, PhD Department of Basic Medical Sciences College of Osteopathic Medicine of the Pacific Western University of Health Sciences 309 East Second Street Pomona, CA 91766, USA Tel. 1 909 469 5654 Fax: 1 909 469 5577 E-mail: [email protected]

Collaboration


Dive into the Weixia Zhong's collaboration.

Top Co-Authors

Avatar

Fanglong Dong

Western University of Health Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge