Weixu Zhai
Bristol-Myers Squibb
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Weixu Zhai.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Samuel W. Gerritz; Christopher Cianci; Sean Kim; Bradley C. Pearce; Carol Deminie; Linda F. Discotto; Brian McAuliffe; B Minassian; Shuhao Shi; Shirong Zhu; Weixu Zhai; Annapurna Pendri; Guo Li; Michael A. Poss; Suzanne Edavettal; Patricia A. McDonnell; Hal A. Lewis; Klaus Maskos; Mario Mörtl; Reiner Kiefersauer; Stefan Steinbacher; Eric T. Baldwin; William Metzler; James Bryson; Matthew D. Healy; Thomas Philip; Mary Zoeckler; Richard Schartman; Michael Sinz; Victor H. Leyva-Grado
Influenza nucleoprotein (NP) plays multiple roles in the virus life cycle, including an essential function in viral replication as an integral component of the ribonucleoprotein complex, associating with viral RNA and polymerase within the viral core. The multifunctional nature of NP makes it an attractive target for antiviral intervention, and inhibitors targeting this protein have recently been reported. In a parallel effort, we discovered a structurally similar series of influenza replication inhibitors and show that they interfere with NP-dependent processes via formation of higher-order NP oligomers. Support for this unique mechanism is provided by site-directed mutagenesis studies, biophysical characterization of the oligomeric ligand:NP complex, and an X-ray cocrystal structure of an NP dimer of trimers (or hexamer) comprising three NP_A:NP_B dimeric subunits. Each NP_A:NP_B dimeric subunit contains two ligands that bridge two composite, protein-spanning binding sites in an antiparallel orientation to form a stable quaternary complex. Optimization of the initial screening hit produced an analog that protects mice from influenza-induced weight loss and mortality by reducing viral titers to undetectable levels throughout the course of treatment.
PLOS Pathogens | 2010
Carl J. Baldick; Michael J. Wichroski; Annapurna Pendri; Ann W. Walsh; Jie Fang; Charles E. Mazzucco; Kevin A. Pokornowski; Ronald E. Rose; Betsy J. Eggers; Mayla Hsu; Weixu Zhai; Guangzhi Zhai; Samuel W. Gerritz; Michael A. Poss; Nicholas A. Meanwell; Mark Cockett; Daniel J. Tenney
Small molecule inhibitors of hepatitis C virus (HCV) are being developed to complement or replace treatments with pegylated interferons and ribavirin, which have poor response rates and significant side effects. Resistance to these inhibitors emerges rapidly in the clinic, suggesting that successful therapy will involve combination therapy with multiple inhibitors of different targets. The entry process of HCV into hepatocytes represents another series of potential targets for therapeutic intervention, involving viral structural proteins that have not been extensively explored due to experimental limitations. To discover HCV entry inhibitors, we utilized HCV pseudoparticles (HCVpp) incorporating E1-E2 envelope proteins from a genotype 1b clinical isolate. Screening of a small molecule library identified a potent HCV-specific triazine inhibitor, EI-1. A series of HCVpp with E1-E2 sequences from various HCV isolates was used to show activity against all genotype 1a and 1b HCVpp tested, with median EC50 values of 0.134 and 0.027 µM, respectively. Time-of-addition experiments demonstrated a block in HCVpp entry, downstream of initial attachment to the cell surface, and prior to or concomitant with bafilomycin inhibition of endosomal acidification. EI-1 was equally active against cell-culture adapted HCV (HCVcc), blocking both cell-free entry and cell-to-cell transmission of virus. HCVcc with high-level resistance to EI-1 was selected by sequential passage in the presence of inhibitor, and resistance was shown to be conferred by changes to residue 719 in the carboxy-terminal transmembrane anchor region of E2, implicating this envelope protein in EI-1 susceptibility. Combinations of EI-1 with interferon, or inhibitors of NS3 or NS5A, resulted in additive to synergistic activity. These results suggest that inhibitors of HCV entry could be added to replication inhibitors and interferons already in development.
Journal of Medicinal Chemistry | 2012
Samuel W. Gerritz; Weixu Zhai; Shuhao Shi; Shirong Zhu; Jeremy H. Toyn; Jere E. Meredith; Lawrence G. Iben; Catherine R. Burton; Charles F. Albright; Andrew C. Good; Andrew J. Tebben; Jodi K. Muckelbauer; Daniel M. Camac; William J. Metzler; Lynda S. Cook; Ramesh Padmanabha; Kimberley A. Lentz; Michael J. Sofia; Michael A. Poss; John E. Macor; Lorin A. Thompson
This report describes the discovery and optimization of a BACE-1 inhibitor series containing an unusual acyl guanidine chemotype that was originally synthesized as part of a 6041-membered solid-phase library. The synthesis of multiple follow-up solid- and solution-phase libraries facilitated the optimization of the original micromolar hit into a single-digit nanomolar BACE-1 inhibitor in both radioligand binding and cell-based functional assay formats. The X-ray structure of representative inhibitors bound to BACE-1 revealed a number of key ligand:protein interactions, including a hydrogen bond between the side chain amide of flap residue Gln73 and the acyl guanidine carbonyl group, and a cation-π interaction between Arg235 and the isothiazole 4-methoxyphenyl substituent. Following subcutaneous administration in rats, an acyl guanidine inhibitor with single-digit nanomolar activity in cells afforded good plasma exposures and a dose-dependent reduction in plasma Aβ levels, but poor brain exposure was observed (likely due to Pgp-mediated efflux), and significant reductions in brain Aβ levels were not obtained.
Bioorganic & Medicinal Chemistry Letters | 2003
Charles J. Andres; Ildiko Antal Zimanyi; Milind Deshpande; Lawrence G. Iben; Katharine A. Grant-Young; Gail K. Mattson; Weixu Zhai
The synthesis of novel ligands for the NPY(2) receptor using solid phase split pool methodology is described. One of the analogues, diamine 16, was found to be a potent NPY(2) binder.
Bioorganic & Medicinal Chemistry Letters | 2015
Kenneth M. Boy; Jason M. Guernon; Yong-Jin Wu; Yunhui Zhang; Joe Shi; Weixu Zhai; Shirong Zhu; Samuel W. Gerritz; Jeremy H. Toyn; Jere E. Meredith; Donna M. Barten; Catherine R. Burton; Charles F. Albright; Andrew C. Good; James E. Grace; Kimberley A. Lentz; Richard E. Olson; John E. Macor; Lorin A. Thompson
The synthesis, evaluation, and structure-activity relationships of a class of acyl guanidines which inhibit the BACE-1 enzyme are presented. The prolinyl acyl guanidine chemotype (7c), unlike compounds of the parent isothiazole chemotype (1), yielded compounds with good agreement between their enzymatic and cellular potency as well as a reduced susceptibility to P-gp efflux. Further improvements in potency and P-gp ratio were realized via a macrocyclization strategy. The in vivo profile in wild-type mice and P-gp effects for the macrocyclic analog 21c is presented.
Bioorganic & Medicinal Chemistry Letters | 2008
Weixu Zhai; Neil Flynn; Daniel Longhi; Joseph A. Tino; Brian J. Murphy; Dorothy Slusarchyk; David A. Gordon; Anna Pendri; Shuhao Shi; Robert H. Stoffel; Baoqing Ma; Michael J. Sofia; Samuel W. Gerritz
The discovery and optimization of a novel series of prolinol-derived GHSR agonists is described. This series emerged from a 11,520-member solid-phase library targeting the GPCR protein superfamily, and the rapid optimization of low micromolar hits into single-digit nanomolar leads can be attributed to the solid-phase synthesis of matrix libraries, which revealed multiple non-additive structure-activity relationships. In addition, the separation of potent diastereomers highlighted the influence of the alpha-methyl stereochemistry of the phenoxyacetamide sidechain on GHSR activity.
Archive | 2005
Weixu Zhai; Samuel W. Gerritz; Charles John Andres; Joseph A. Tino
Archive | 2011
Christopher Cianci; Samuel W. Gerritz; Sean Kim; David R. Langley; Guo Li; Bradley C. Pearce; Annapurna Pendri; Shuhao Shi; Weixu Zhai; Shirong Zhu
Tetrahedron Letters | 2012
Weixu Zhai; Samuel W. Gerritz; Michael J. Sofia
Archive | 2011
Christopher Cianci; Samuel W. Gerritz; Guo Li; Bradley C. Pearce; Annapurna Pendri; Shuhao Shi; Weixu Zhai; Shirong Zhu