Weiye Wang
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Weiye Wang.
Journal of Biological Chemistry | 2008
Chang Hoon Ha; Weiye Wang; Bong Sook Jhun; Chelsea Wong; Angelika Hausser; Klaus Pfizenmaier; Timothy A. McKinsey; Eric N. Olson; Zheng Gen Jin
Vascular endothelial growth factor (VEGF) is essential for normal and pathological angiogenesis. However, the signaling pathways linked to gene regulation in VEGF-induced angiogenesis are not fully understood. Here we demonstrate a critical role of protein kinase D (PKD) and histone deacetylase 5 (HDAC5) in VEGF-induced gene expression and angiogenesis. We found that VEGF stimulated HDAC5 phosphorylation and nuclear export in endothelial cells through a VEGF receptor 2-phospholipase Cγ-protein kinase C-PKD-dependent pathway. We further showed that the PKD-HDAC5 pathway mediated myocyte enhancer factor-2 transcriptional activation and a specific subset of gene expression in response to VEGF, including NR4A1, an orphan nuclear receptor involved in angiogenesis. Specifically, inhibition of PKD by overexpression of the PKD kinase-negative mutant prevents VEGF-induced HDAC5 phosphorylation and nuclear export as well as NR4A1 induction. Moreover, a mutant of HDAC5 specifically deficient in PKD-dependent phosphorylation inhibited VEGF-mediated NR4A1 expression, endothelial cell migration, and in vitro angiogenesis. These findings suggest that the PKD-HDAC5 pathway plays an important role in VEGF regulation of gene transcription and angiogenesis.
Blood | 2010
Weiye Wang; Chang Hoon Ha; Bong Sook Jhun; Chelsea Wong; Mukesh K. Jain; Zheng Gen Jin
Fluid shear stress generated by steady laminar blood flow protects vessels from atherosclerosis. Krüppel-like factor 2 (KLF2) and endothelial nitric oxide synthase (eNOS) are fluid shear stress-responsive genes and key mediators in flow anti-inflammatory and antiatherosclerotic actions. However, the molecular mechanisms underlying flow induction of KLF2 and eNOS remain largely unknown. Here, we show a novel role of histone deacetylase 5 (HDAC5) in flow-mediated KLF2 and eNOS expression. We found for the first time that fluid shear stress stimulated HDAC5 phosphorylation and nuclear export in endothelial cells through a calcium/calmodulin-dependent pathway. Consequently, flow induced the dissociation of HDAC5 and myocyte enhancer factor-2 (MEF2) and enhanced MEF2 transcriptional activity, which leads to expression of KLF2 and eNOS. Adenoviral overexpression of a HDAC5 phosphorylation-defective mutant (Ser259/Ser498 were replaced by Ala259/Ala498, HDAC5-S/A), which shows resistance to flow-induced nuclear export, suppressed flow-mediated MEF2 transcriptional activity and expression of KLF2 and eNOS. Importantly, HDAC5-S/A attenuated the flow-inhibitory effect on monocyte adhesion to endothelial cells. Taken together, our results reveal that phosphorylation-dependent derepression of HDAC5 mediates flow-induced KLF2 and eNOS expression as well as flow anti-inflammation, and suggest that HDAC5 could be a potential therapeutic target for the prevention of atherosclerosis.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Chang Hoon Ha; Ji Young Kim; Jinjing Zhao; Weiye Wang; Bong Sook Jhun; Chelsea Wong; Zheng Gen Jin
Dynamic nucleocytoplasmic shuttling of class IIa histone deacetylases (HDACs) is a fundamental mechanism regulating gene transcription. Recent studies have identified several protein kinases that phosphorylate HDAC5, leading to its exportation from the nucleus. However, the negative regulatory mechanisms for HDAC5 nuclear exclusion remain largely unknown. Here we show that cAMP-activated protein kinase A (PKA) specifically phosphorylates HDAC5 and prevents its export from the nucleus, leading to suppression of gene transcription. PKA interacts directly with HDAC5 and phosphorylates HDAC5 at serine 280, an evolutionarily conserved site. Phosphorylation of HDAC5 by PKA interrupts the association of HDAC5 with protein chaperone 14-3-3 and hence inhibits stress signal-induced nuclear export of HDAC5. An HDAC5 mutant that mimics PKA-dependent phosphorylation localizes in the nucleus and acts as a dominant inhibitor for myocyte enhancer factor 2 transcriptional activity. Molecular manipulations of HDAC5 show that PKA-phosphorylated HDAC5 inhibits cardiac fetal gene expression and cardiomyocyte hypertrophy. Our findings identify HDAC5 as a substrate of PKA and reveal a cAMP/PKA-dependent pathway that controls HDAC5 nucleocytoplasmic shuttling and represses gene transcription. This pathway may represent a mechanism by which cAMP/PKA signaling modulates a wide range of biological functions and human diseases such as cardiomyopathy.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2007
Xiangbin Xu; Chang Hoon Ha; Chelsea Wong; Weiye Wang; Angelika Hausser; Klaus Pfizenmaier; Eric N. Olson; Timothy A. McKinsey; Zheng Gen Jin
Background—Angiotensin II (Ang II) induces the phenotypic modulation and hypertrophy of vascular smooth muscle cells (VSMCs), which is implicated in the pathogenesis of hypertension, atherosclerosis, and diabetes. In this study, we tested the hypothesis that histone deacetylases 5 (HDAC5) and its signal pathway play a role in Ang II–induced VSMC hypertrophy. Methods and Results—VSMCs were isolated from the thoracic aortas of male Sprague-Dawley rats and treated with Ang II. We found that Ang II rapidly stimulated phosphorylation of HDAC5 at Serine259/498 residues in a time- and dose- dependent manner. Ang II receptor-1, protein kinase C, and protein kinase D1 (PKD1) mediated HDAC5 phosphorylation. Furthermore, we observed that Ang II stimulated HDAC5 nuclear export, which was dependent on its PKD1-dependent phosphorylation. Consequently, both inhibiting PKD1 and HDAC5 Serine259/498 to Alanine mutant significantly attenuated Ang II–induced myocyte enhancer factor-2 (MEF2) transcriptional activity and protein synthesis in VSMCs. Conclusion—These findings demonstrate for the first time that PKD1-dependent HDAC5 phosphorylation and nuclear export mediates Ang II–induced MEF2 activation and VSMC hypertrophy, and suggest that PKD1 and HDAC5 may emerge as potential targets for the treatment of pathological vascular hypertrophy.
Journal of Cell Communication and Signaling | 2010
Zhiyong Lin; Viswanath Natesan; Hong Shi; Anne Hamik; Daiji Kawanami; Caili Hao; Ganapati Mahabaleshwar; Weiye Wang; Zheng Gen Jin; G. Brandon Atkins; Sue M. Firth; Laure Rittié; Bernard Perbal; Mukesh K. Jain
The vascular endothelium plays a fundamental role in the health and disease of the cardiovascular system. The molecular mechanisms regulating endothelial homeostasis, however, remain incompletely understood. CCN3, a member of the CCN (Cyr61, Ctgf, Nov) family of cell growth and differentiation regulators, has been shown to play an important role in numerous cell types. The function of CCN3 in endothelial cells has yet to be elucidated. Immunohistochemical analysis of CCN3 expression in mouse tissues revealed robust immunoreactivity in the endothelium of large arteries, small resistance vessels, and veins. We found that CCN3 expression in human umbilical vein endothelial cells (HUVECs) is transcriptionally induced by laminar shear stress (LSS) and HMG CoA-reductase inhibitors (statins). Promoter analyses identified the transcription factor Kruppel-like factor 2 (KLF2) as a direct regulator of CCN3 expression. In contrast to LSS, proinflammatory cytokines reduced CCN3 expression. Adenoviral overexpression of CCN3 in HUVEC markedly inhibited the cytokine-mediated induction of vascular adhesion molecule-1 (VCAM-1). Consistent with this observation, CCN3 significantly reduced monocyte adhesion. Conversely, CCN3 knockdown in HUVECs resulted in enhancement of cytokine-induced VCAM-1 expression. Concordant effects were observed on monocyte adhesion. Gain and loss-of-function mechanistic studies demonstrated that CCN3 negatively regulates nuclear factor kappaB (NF-κB) activity by reducing its translocation into the nucleus and subsequent binding to the VCAM-1 promoter, suggesting that CCN3’s anti-inflammatory effects occur secondary to inhibition of NF-κB nuclear accumulation. This study identifies CCN3 as a novel regulator of endothelial proinflammatory activation.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2011
Jinjing Zhao; Weiye Wang; Chang Hoon Ha; Ji Young Kim; Chelsea Wong; Eileen M. Redmond; Anne Hamik; Mukesh K. Jain; Gen-Sheng Feng; Zheng Gen Jin
Objective—Grb2-associated binder 1 (Gab1), a scaffolding adaptor protein, plays an important role in transmitting key signals that control cell growth, differentiation, and function from multiple tyrosine kinase receptors. The study was designed to investigate the role of endothelial Gab1 in angiogenesis and its underlying molecular mechanisms. Methods and Results—Using Cre-Lox recombination technology, we generated endothelial-specific Gab1 knockout (Gab1-ecKO) mice. Gab1-ecKO mice are viable and showed no obvious developmental defects in the vascular system. To analyze the role of Gab1 in postnatal angiogenesis, we used hindlimb ischemia and Matrigel plug models. We found that loss of endothelial Gab1 in mice dramatically impaired postnatal angiogenesis. Gab1-ecKO mice had impaired ischemia-initiated blood flow recovery, exhibited reduced angiogenesis, and were associated with marked limb necrosis. We further observed significant endothelial cell (EC) death in the ischemic hindlimb of Gab1-ecKO mice. Matrigel plug assay showed that hepatocyte growth factor (HGF)–mediated angiogenesis was inhibited in Gab1-ecKO mice. In vitro studies showed that Gab1 was required for HGF-induced EC migration, tube formation, and microvessel sprouting. Mechanistically, HGF stimulated Gab1 tyrosine phosphorylation in ECs, leading to activation of extracellular regulated MAP kinase 1/2 and Akt, which are angiogenic and survival signaling. Conclusion—Gab1 is essential for postnatal angiogenesis through mediating angiogenic and survival signaling.
Circulation Research | 2012
Bong Sook Jhun; Jin O-Uchi; Weiye Wang; Chang Hoon Ha; Jinjing Zhao; Ji Young Kim; Chelsea Wong; Robert T. Dirksen; Coeli M. Lopes; Zheng Gen Jin
Rationale: The Rad-Gem/Kir-related family (RGKs) consists of small GTP-binding proteins that strongly inhibit the activity of voltage-gated calcium channels. Among RGKs, Rem1 is strongly and specifically expressed in cardiac tissue. However, the physiological role and regulation of RGKs, and Rem1 in particular, are largely unknown. Objective: To determine if Rem1 function is physiologically regulated by adrenergic signaling and thus impacts voltage-gated L-type calcium channel (VLCC) activity in the heart. Methods and Results: We found that activation of protein kinase D1, a protein kinase downstream of &agr;1-adrenergic signaling, leads to direct phosphorylation of Rem1 at Ser18. This results in an increase of the channel activity and plasma membrane expression observed by using a combination of electrophysiology, live cell confocal microscopy, and immunohistochemistry in heterologous expression system and neonatal cardiomyocytes. In addition, we show that stimulation of &agr;1-adrenergic receptor-protein kinase D1-Rem1 signaling increases transverse-tubule VLCC expression that results in increased L-type Ca2+ current density in adult ventricular myocytes. Conclusion: The &agr;1-adrenergic stimulation releases Rem1 inhibition of VLCCs through direct phosphorylation of Rem1 at Ser18 by protein kinase D1, resulting in an increase of the channel activity and transverse-tubule expression. Our results uncover a novel molecular regulatory mechanism of VLCC trafficking and function in the heart and provide the first demonstration of physiological regulation of RGK function.
Cardiovascular Research | 2014
Il-Sun Kwon; Weiye Wang; Suowen Xu; Zheng Gen Jin
AIMS Vascular endothelial dysfunction and inflammation are hallmarks of atherosclerosis. Krüppel-like factor 2 (KLF2) is a key mediator of anti-inflammatory and anti-atherosclerotic properties of the endothelium. However, little is known of the molecular mechanisms for regulating KLF2 transcriptional activation. METHODS AND RESULTS Here, we found that histone deacetylase 5 (HDAC5) associates with KLF2 and represses KLF2 transcriptional activation. HDAC5 resided with KLF2 in the nuclei of human umbilical cord vein endothelial cells (HUVECs). Steady laminar flow attenuated the association of HDAC5 with KLF2 via stimulating HDAC5 phosphorylation-dependent nuclear export in HUVEC. We also mapped the KLF2-HDAC5-interacting domains and found that the N-terminal region of HDAC5 interacts with the C-terminal domain of KLF2. Chromatin immunoprecipitation and luciferase reporter assays showed that HDAC5 through a direct association with KLF2 suppressed KLF2 transcriptional activation. HDAC5 overexpression inhibited KLF2-dependent endothelial nitric oxide synthesis (eNOS) promoter activity in COS7 cell and gene expression in both HUVECs and bovine aortic endothelial cells (BAECs). Conversely, HDAC5 silencing enhanced KLF2 transcription and hence eNOS expression in HUVEC. Moreover, we observed that the level of eNOS protein in the thoracic aorta isolated from HDAC5 knockout mice was higher, whereas expression of pro-inflammatory vascular cell adhesion molecule 1 was lower, compared with those of HDAC5 wild-type mice. CONCLUSIONS We reveal a novel role of HDAC5 in modulating the KLF2 transcriptional activation and eNOS expression. These findings suggest that HDAC5, a binding partner and modulator of KLF2, could be a new therapeutic target to prevent vascular endothelial dysfunction associated with cardiovascular diseases.
International Journal of Cardiology | 2015
Weiye Wang; Suowen Xu; Meimei Yin; Zheng Gen Jin
Growth factors and their downstream receptor tyrosine kinases (RTKs) mediate a number of biological processes controlling cell function. Adaptor (docking) proteins, which consist exclusively of domains and motifs that mediate molecular interactions, link receptor activation to downstream effectors. Recent studies have revealed that Grb2-associated-binders (Gab) family members (including Gab1, Gab2, and Gab3), when phosphorylated on tyrosine residues, provide binding sites for multiple effector proteins, such as Src homology-2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) and phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, thereby playing important roles in transducing RTKs-mediated signals into pathways with diversified biological functions. Here, we provide an up-to-date overview on the domain structure and biological functions of Gab1, the most intensively studied Gab family protein, in growth factor signaling and biological functions, with a special focus on angiogenesis.
Cellular Signalling | 2016
Suowen Xu; Chang Hoon Ha; Weiye Wang; Xiangbin Xu; Meimei Yin; Felix Q Jin; Michael A. Mastrangelo; Marina Koroleva; Keigi Fujiwara; Zheng Gen Jin
Endothelial dysfunction, characterized by impaired activation of endothelial nitric oxide (NO) synthase (eNOS) and ensued decrease of NO production, is a common mechanism of various cardiovascular pathologies, including hypertension and atherosclerosis. Laminar blood flow-mediated specific signaling cascades modulate vascular endothelial cells (ECs) structure and functions. We have previously shown that flow-stimulated Gab1 (Grb2-associated binder-1) tyrosine phosphorylation mediates eNOS activation in ECs, which in part confers laminar flow atheroprotective action. However, the molecular mechanisms whereby flow regulates Gab1 tyrosine phosphorylation and its downstream signaling events remain unclear. Here we show that platelet endothelial cell adhesion molecule-1 (PECAM1), a key molecule in an endothelial mechanosensing complex, specifically mediates Gab1 tyrosine phosphorylation and its downstream Akt and eNOS activation in ECs upon flow rather than hepatocyte growth factor (HGF) stimulation. Small interfering RNA (siRNA) targeting PECAM1 abolished flow- but not HGF-induced Gab1 tyrosine phosphorylation and Akt, eNOS activation as well as Gab1 membrane translocation. Protein-tyrosine phosphatase SHP2, which has been shown to interact with Gab1, was involved in flow signaling and HGF signaling, as SHP2 siRNA diminished the flow- and HGF-induced Gab1 tyrosine phosphorylation, membrane localization and downstream signaling. Pharmacological inhibition of PI3K decreased flow-, but not HGF-mediated Gab1 phosphorylation and membrane localization as well as eNOS activation. Finally, we observed that flow-mediated Gab1 and eNOS phosphorylation in vivo induced by voluntary wheel running was reduced in PECAM1 knockout mice. These results demonstrate a specific role of PECAM1 in flow-mediated Gab1 tyrosine phosphorylation and eNOS signaling in ECs.