Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weiyi He is active.

Publication


Featured researches published by Weiyi He.


Nature Genetics | 2013

A heterozygous moth genome provides insights into herbivory and detoxification

Minsheng You; Zhen Yue; Weiyi He; Xinhua Yang; Guang Yang; Miao Xie; Dongliang Zhan; Simon W. Baxter; Liette Vasseur; Geoff M. Gurr; Carl J. Douglas; Jianlin Bai; Ping Wang; Kai Cui; Shiguo Huang; Xianchun Li; Qing Zhou; Zhangyan Wu; Qilin Chen; Chunhui Liu; Bo Wang; Xiaojing Li; Xiufeng Xu; Changxin Lu; Min Hu; John W. Davey; Sandy M. Smith; Ming-Shun Chen; Xiaofeng Xia; Weiqi Tang

How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.


Genomics | 2012

Developmental and insecticide-resistant insights from the de novo assembled transcriptome of the diamondback moth, Plutella xylostella.

Weiyi He; Minsheng You; Liette Vasseur; Guang Yang; Miao Xie; Kai Cui; Jianlin Bai; Chunhui Liu; Xiaojing Li; Xiufeng Xu; Shiguo Huang

We present here the de novo assembly and annotation of the transcriptome of Plutella xylostella (diamondback moth (DBM)), a widespread destructive pest of cruciferous plants, using short reads generated by Illumina sequencing from different developmental stages and insecticide-resistant strains. A total of 171,262 non-redundant sequences, denoted as unigenes, were obtained. They represented approximately 100-fold of all DBM mRNA and EST sequences in GenBank thus far. We identified 38,255 unigenes highly similar to the known functional protein-coding genes, most of which were annotated using gene ontology (GO) and orthologous groups of proteins (COG). Global profiling of differentially expressed unigenes revealed enriched GOs and biological pathways that were related to specific developmental stages and insecticide resistance. We also evaluated the resistance-related single nucleotide polymorphism (SNP) using this high-throughput genotyping method. The newly developed transcriptome will facilitate researches on the DBM developmental biology and insecticide resistance evolution, and ultimately provide better pest management systems.


PLOS ONE | 2013

DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance.

Xiaofeng Xia; Dandan Zheng; Huanzi Zhong; Bingcai Qin; Geoff M. Gurr; Liette Vasseur; Hailan Lin; Jianlin Bai; Weiyi He; Minsheng You

Background Insect midgut microbiota is important in host nutrition, development and immune response. Recent studies indicate possible links between insect gut microbiota and resistance to biological and chemical toxins. Studies of this phenomenon and symbionts in general have been hampered by difficulties in culture-based approach. In the present study, DNA sequencing was used to examine the midgut microbiota of diamondback moth (DBM), Plutella xylostella (L.), a destructive pest that attacks cruciferous crops worldwide. Its ability to develop resistance to many types of synthetic insecticide and even Bacillus thuringiensis toxins makes it an important species to study. Methodology/Principal Findings Bacteria of the DBM larval midgut in a susceptible and two insecticide (chlorpyrifos and fipronil) resistant lines were examined by Illumina sequencing sampled from an insect generation that was not exposed to insecticide. This revealed that more than 97% of the bacteria were from three orders: Enterobacteriales, Vibrionales and Lactobacillales. Both insecticide-resistant lines had more Lactobacillales and the much scarcer taxa Pseudomonadales and Xanthomonadales with fewer Enterobacteriales compared with the susceptible strain. Consistent with this, a second study observed an increase in the proportion of Lactobacillales in the midgut of DBM individuals from a generation treated with insecticides. Conclusions/Significance This is the first report of high-throughput DNA sequencing of the entire microbiota of DBM. It reveals differences related to inter- and intra-generational exposure to insecticides. Differences in the midgut microbiota among susceptible and insecticide-resistant lines are independent of insecticide exposure in the sampled generations. While this is consistent with the hypothesis that Lactobacillales or other scarcer taxa play a role in conferring DBM insecticide resistance, further studies are necessary to rule out other possibilities. Findings constitute the basis for future molecular work on the functions of insect midgut microbiota taxa and their possible role in conferring host resistance to toxins.


Database | 2014

DBM-DB: the diamondback moth genome database

Weiqi Tang; Liying Yu; Weiyi He; Guang Yang; Fushi Ke; Simon W. Baxter; Shijun You; Carl J. Douglas; Minsheng You

The diamondback moth Genome Database (DBM-DB) is a central online repository for storing and integrating genomic data of diamondback moth (DBM), Plutella xylostella (L.). It provides comprehensive search tools and downloadable datasets for scientists to study comparative genomics, biological interpretation and gene annotation of this insect pest. DBM-DB contains assembled transcriptome datasets from multiple DBM strains and developmental stages, and the annotated genome of P. xylostella (version 2). We have also integrated publically available ESTs from NCBI and a putative gene set from a second DBM genome (KONAGbase) to enable users to compare different gene models. DBM-DB was developed with the capacity to incorporate future data resources, and will serve as a long-term and open-access database that can be conveniently used for research on the biology, distribution and evolution of DBM. This resource aims to help reduce the impact DBM has on agriculture using genomic and molecular tools. Database URL: http://iae.fafu.edu.cn/DBM/


Scientific Reports | 2015

Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.)

Liying Yu; Weiqi Tang; Weiyi He; Xiaoli Ma; Liette Vasseur; Simon W. Baxter; Guang Yang; Shiguo Huang; Fengqin Song; Minsheng You

Cytochrome P450 monooxygenases are present in almost all organisms and can play vital roles in hormone regulation, metabolism of xenobiotics and in biosynthesis or inactivation of endogenous compounds. In the present study, a genome-wide approach was used to identify and analyze the P450 gene family of diamondback moth, Plutella xylostella, a destructive worldwide pest of cruciferous crops. We identified 85 putative cytochrome P450 genes from the P. xylostella genome, including 84 functional genes and 1 pseudogene. These genes were classified into 26 families and 52 subfamilies. A phylogenetic tree constructed with three additional insect species shows extensive gene expansions of P. xylostella P450 genes from clans 3 and 4. Gene expression of cytochrome P450s was quantified across multiple developmental stages (egg, larva, pupa and adult) and tissues (head and midgut) using P. xylostella strains susceptible or resistant to insecticides chlorpyrifos and fiprinol. Expression of the lepidopteran specific CYP367s predominantly occurred in head tissue suggesting a role in either olfaction or detoxification. CYP340s with abundant transposable elements and relatively high expression in the midgut probably contribute to the detoxification of insecticides or plant toxins in P. xylostella. This study will facilitate future functional studies of the P. xylostella P450s in detoxification.


BMC Genomics | 2016

Characterization and expression profiling of ATP-binding cassette transporter genes in the diamondback moth, Plutella xylostella (L.).

Weiping Qi; Xiaoli Ma; Weiyi He; Wei Chen; Mingmin Zou; Geoffrey Gurr; Liette Vasseur; Minsheng You

BackgroundATP-binding cassette (ABC) transporters are one of the major transmembrane protein families found in all organisms and play important roles in transporting a variety of compounds across intra and extra cellular membranes. In some species, ABC transporters may be involved in the detoxification of substances such as insecticides. The diamondback moth, Plutella xylostella (L.), a destructive pest of cruciferous crops worldwide, is an important species to study as it is resistant to many types of insecticides as well as biological control Bacillus thuringiensis toxins.ResultsA total of 82 ABC genes were identified from our published P. xylostella genome, and grouped into eight subfamilies (ABCA-H) based on phylogenetic analysis. Genes of subfamilies ABCA, ABCC and ABCH were found to be expanded in P. xylostella compared with those in Bombyx mori, Manduca sexta, Heliconius melpomene, Danaus plexippus, Drosophila melanogaster, Tetranychus urticae and Homo sapiens. Phylogenetic analysis indicated that many of the ABC transporters in P. xylostella are orthologous to the well-studied ABC transporter genes in the seven other species. Transcriptome- and qRT-PCR-based analysis elucidated physiological effects of ABC gene expressions of P. xylostella which were developmental stage- and tissue-specific as well as being affected by whether or not the insects were from an insecticide-resistant strain. Two ABCC and one ABCA genes were preferentially expressed in midgut of the 4th-instar larvae of a susceptible strain (Fuzhou-S) suggesting their potential roles in metabolizing plant defensive chemicals. Most of the highly expressed genes in insecticide-resistant strains were also predominantly expressed in the tissues of Malpighian tubules and midgut.ConclusionsThis is the most comprehensive study on identification, characterization and expression profiling of ABC transporter genes in P. xylostella to date. The diversified features and expression patterns of this gene family may be associated with the evolutionary capacity of this species to develop resistance to a wide range of insecticides and biological toxins. Our findings provide a solid foundation for future functional studies on specific ABC transporter genes in P. xylostella, and for further understanding of their physiological roles and regulatory pathways in insecticide resistance.


Scientific Reports | 2015

Generation-based life table analysis reveals manifold effects of inbreeding on the population fitness in Plutella xylostella

Lu Peng; Mingmin Zou; Nana Ren; Miao Xie; Liette Vasseur; Yifan Yang; Weiyi He; Guang Yang; Geoff M. Gurr; Youming Hou; Shijun You; Minsheng You

Understanding how inbreeding affects fitness is biologically important for conservation and pest management. Despite being a worldwide pest of many economically important cruciferous crops, the influence of inbreeding on diamondback moth, Plutella xylostella (L.), populations is currently unknown. Using age-stage-specific life tables, we quantified the inbreeding effects on fitness-related traits and demographic parameters of P. xylostella. Egg hatching rate, survival and fecundity of the inbred line significantly declined compared to those of the outbred line over time. The inbred P. xylostella line showed significantly lower intrinsic rate of increase (r), net reproduction rate (R0), and finite increase rate (λ), and increasing generation time (T). Inbreeding effects vary with developmental stages and the fitness-related traits can be profoundly affected by the duration of inbreeding. Our work provides a foundation for further studies on molecular and genetic bases of the inbreeding depression for P. xylostella.


Genomics | 2018

Genome-wide identification and characterization of putative lncRNAs in the diamondback moth, Plutella xylostella (L.)

Yue Wang; Tingting Xu; Weiyi He; Xiujing Shen; Qian Zhao; Jianlin Bai; Minsheng You

Long non-coding RNAs (lncRNAs) are of particular interest because of their contributions to many biological processes. Here, we present the genome-wide identification and characterization of putative lncRNAs in a global insect pest, Plutella xylostella. A total of 8096 lncRNAs were identified and classified into three groups. The average length of exons in lncRNAs was longer than that in coding genes and the GC content was lower than that in mRNAs. Most lncRNAs were flanked by canonical splice sites, similar to mRNAs. Expression profiling identified 114 differentially expressed lncRNAs during the DBM development and found that majority were temporally specific. While the biological functions of lncRNAs remain uncharacterized, many are microRNA precursors or competing endogenous RNAs involved in micro-RNA regulatory pathways. This work provides a valuable resource for further studies on molecular bases for development of DBM and lay the foundation for discovery of lncRNA functions in P. xylostella.


Molecular Genetics and Genomics | 2018

Genome-wide investigation of transcription factors provides insights into transcriptional regulation in Plutella xylostella

Qian Zhao; Dongna Ma; Yuping Huang; Weiyi He; Yiying Li; Liette Vasseur; Minsheng You

Transcription factors (TFs), which play a vital role in regulating gene expression, are prevalent in all organisms and characterization of them may provide important clues for understanding regulation in vivo. The present study reports a genome-wide investigation of TFs in the diamondback moth, Plutella xylostella (L.), a worldwide pest of crucifers. A total of 940 TFs distributed among 133 families were identified. Phylogenetic analysis of insect species showed that some of these families were found to have expanded during the evolution of P. xylostella or Lepidoptera. RNA-seq analysis showed that some of the TF families, such as zinc fingers, homeobox, bZIP, bHLH, and MADF_DNA_bdg genes, were highly expressed in certain tissues including midgut, salivary glands, fat body, and hemocytes, with an obvious sex-biased expression pattern. In addition, a number of TFs showed significant differences in expression between insecticide susceptible and resistant strains, suggesting that these TFs play a role in regulating genes related to insecticide resistance. Finally, we identified an expansion of the HOX cluster in Lepidoptera, which might be related to Lepidoptera-specific evolution. Knockout of this cluster using CRISPR/Cas9 showed that the egg cannot hatch, indicating that this cluster may be related to egg development and maturation. This is the first comprehensive study on identifying and characterizing TFs in P. xylostella. Our results suggest that some TF families are expanded in the P. xylostella genome, and these TFs may have important biological roles in growth, development, sexual dimorphism, and resistance to insecticides. The present work provides a solid foundation for understanding regulation via TFs in P. xylostella and insights into the evolution of the P. xylostella genome.


Insect Science | 2017

Cell lines from diamondback moth exhibiting differential susceptibility to baculovirus infection and expressing midgut genes

Xiaoli Ma; Weiyi He; Ping Wang; Minsheng You

Six new cell lines were established from embryonic tissues of the diamondback moth, Plutella xylostella (L.). The cell lines showed differential characteristics, including growth in attachment or in suspension, susceptibility to a baculovirus infection and expression of genes involved in the glucosinolate detoxification pathway in P. xylostella larvae. Five of the cell lines grew attached to the culture flask and one cell line grew unattached as a suspension cell line. The cell lines had population doubling times ranging from 18 to 23 h. Among five of the P. xylostella cell lines examined for infection of a nucleopolyhedrovirus from Autographa californica, AcMNPV, four cell lines were highly susceptible to AcMNPV infection, but one was only semi‐permissive to AcMNPV infection. The production of two recombinant proteins, a β‐galactosidase of bacterial origin and a secreted alkaline phosphatase of eukaryotic origin, in the P. xylostella cell lines was examined in comparison with that in the cell line Sf9 which is commonly used for recombinant protein production. In the P. xylostella cell lines, expression of three important midgut genes involved in the glucosinolate detoxification pathway, including the glucosinolate sulfatase genes GSS1 and GSS2 and the sulfatase modifying factor gene SUMF1, was detected. The P. xylostella cell lines developed in this study could be useful in in vitro research systems for studying insec–virus interactions and complex molecular mechanisms in glucosinolate detoxification and insect–plant interactions.

Collaboration


Dive into the Weiyi He's collaboration.

Top Co-Authors

Avatar

Minsheng You

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guang Yang

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar

Shijun You

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fushi Ke

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Jianlin Bai

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Mingmin Zou

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Weiqi Tang

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Liying Yu

Fujian Agriculture and Forestry University

View shared research outputs
Researchain Logo
Decentralizing Knowledge