Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weizhong Chang is active.

Publication


Featured researches published by Weizhong Chang.


Nature Genetics | 2007

Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta

Wayne A. Cabral; Weizhong Chang; Aileen M. Barnes; MaryAnn Weis; Melissa Scott; Sergey Leikin; Elena Makareeva; Natalia Kuznetsova; Kenneth N. Rosenbaum; Cynthia J. Tifft; Dorothy I. Bulas; Chahira Kozma; Peter A. Smith; David R. Eyre; Joan C. Marini

A recessive form of severe osteogenesis imperfecta that is not caused by mutations in type I collagen has long been suspected. Mutations in human CRTAP (cartilage-associated protein) causing recessive bone disease have been reported. CRTAP forms a complex with cyclophilin B and prolyl 3-hydroxylase 1, which is encoded by LEPRE1 and hydroxylates one residue in type I collagen, α1(I)Pro986. We present the first five cases of a new recessive bone disorder resulting from null LEPRE1 alleles; its phenotype overlaps with lethal/severe osteogenesis imperfecta but has distinctive features. Furthermore, a mutant allele from West Africa, also found in African Americans, occurs in four of five cases. All proband LEPRE1 mutations led to premature termination codons and minimal mRNA and protein. Proband collagen had minimal 3-hydroxylation of α1(I)Pro986 but excess lysyl hydroxylation and glycosylation along the collagen helix. Proband collagen secretion was moderately delayed, but total collagen secretion was increased. Prolyl 3-hydroxylase 1 is therefore crucial for bone development and collagen helix formation.


The New England Journal of Medicine | 2010

Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding.

Aileen M. Barnes; Erin Carter; Wayne A. Cabral; MaryAnn Weis; Weizhong Chang; Elena Makareeva; Sergey Leikin; Charles N. Rotimi; David R. Eyre; Cathleen L. Raggio; Joan C. Marini

Osteogenesis imperfecta is a heritable disorder that causes bone fragility. Mutations in type I collagen result in autosomal dominant osteogenesis imperfecta, whereas mutations in either of two components of the collagen prolyl 3-hydroxylation complex (cartilage-associated protein [CRTAP] and prolyl 3-hydroxylase 1 [P3H1]) cause autosomal recessive osteogenesis imperfecta with rhizomelia (shortening of proximal segments of upper and lower limbs) and delayed collagen folding. We identified two siblings who had recessive osteogenesis imperfecta without rhizomelia. They had a homozygous start-codon mutation in the peptidyl-prolyl isomerase B gene (PPIB), which results in a lack of cyclophilin B (CyPB), the third component of the complex. The probands collagen had normal collagen folding and normal prolyl 3-hydroxylation, suggesting that CyPB is not the exclusive peptidyl-prolyl cis-trans isomerase that catalyzes the rate-limiting step in collagen folding, as is currently thought.


Cell Cycle | 2007

Components of the collagen prolyl 3-hydroxylation complex are crucial for normal bone development

Joan C. Marini; Wayne A. Cabral; Aileen M. Barnes; Weizhong Chang

Prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP) and cyclophilin B (CyPB) form a complex in the endoplasmic reticulum which is responsible for 3-hydroxylation of a limited number of proline residues in types I, II and V collagens. In this complex, CRTAP serves the role of helper protein, while P3H1 provides the enzymatic activity for the modification. In type I collagen, the major protein of the extracellular matrix of bone, the complex 3-hydroxylates only the α1(I)Pro986 residue. P3H1 and CRTAP each also have independent roles as components of matrix. Furthermore, the two proteins have significant homology with each other. The critical importance of the components of the complex for normal bone development has been revealed by a Crtap knock-out mouse and by infants and children with null mutations of CRTAP and LEPRE1, the gene that encodes P3H1. On a clinical level, defects in the components of the prolyl 3-hydroxylation complex have been shown to be the long-sought cause of severe and lethal recessive osteogenesis imperfecta.


PLOS Genetics | 2014

Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

Wayne A. Cabral; Irina Perdivara; MaryAnn Weis; Masahiko Terajima; Angela R. Blissett; Weizhong Chang; Joseph E. Perosky; Elena Makareeva; Edward L. Mertz; Sergey Leikin; Kenneth B. Tomer; Kenneth M. Kozloff; David R. Eyre; Mitsuo Yamauchi; Joan C. Marini

Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib−/− mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2–11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib−/− fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties.


Human Molecular Genetics | 2010

Prolyl 3-hydroxylase 1 and CRTAP are mutually stabilizing in the endoplasmic reticulum collagen prolyl 3-hydroxylation complex

Weizhong Chang; Aileen M. Barnes; Wayne A. Cabral; Joann Bodurtha; Joan C. Marini

Null mutations in cartilage-associated protein (CRTAP) and prolyl 3-hydroxylase 1 (P3H1/LEPRE1) cause types VII and VIII OI, respectively, two novel recessive forms of osteogenesis imperfecta (OI) with severe to lethal bone dysplasia and overmodification of the type I collagen helical region. CRTAP and P3H1 form a complex with cyclophilin B (CyPB) in the endoplasmic reticulum (ER) which 3-hydroxylates the Pro986 residue of alpha1(I) and alpha1(II) collagen chains. We investigated the interaction of complex components in fibroblasts from types VII and VIII OI patients. Both CRTAP and P3H1 are absent or reduced on western blots and by immunofluorescence microscopy in cells containing null mutations in either gene. Levels of LEPRE1 or CRTAP transcripts, however, are normal in CRTAP- or LEPRE1-null cells, respectively. Stable transfection of a CRTAP or LEPRE1 expression construct into cells with null mutations for the transfected cDNA restored both CRTAP and P3H1 protein levels. Normalization of collagen helical modification in transfected CRTAP-null cells demonstrated that the restored proteins functioned effectively as a complex. These data indicate that CRTAP and P3H1 are mutually stabilized in the collagen prolyl 3-hydroxylation complex. CyPB levels were unaffected by mutations in either CRTAP or LEPRE1. Proteasomal inhibitors partially rescue P3H1 protein in CRTAP-null cells. In LEPRE1-null cells, secretion of CRTAP is increased compared with control cells and accounts for 15-20% of the decreased CRTAP detected in cells. Thus, mutual stabilization of P3H1 and CRTAP in the ER collagen modification complex is an underlying mechanism for the overlapping phenotype of types VII and VIII OI.


American Journal of Physiology-endocrinology and Metabolism | 2010

Obese carboxypeptidase E knockout mice exhibit multiple defects in peptide hormone processing contributing to low bone mineral density.

Niamh X. Cawley; Tulin Yanik; Alicja Woronowicz; Weizhong Chang; Joan C. Marini; Y. Peng Loh

Carboxypeptidase E (CPE) is a prohormone/proneuropeptide processing enzyme, and mice bearing CPE mutations exhibit an obese and diabetic phenotype. Studies on CPE knockout (KO) mice revealed poor prohormone processing, resulting in deficiencies in peptide hormones/neuropeptides such as insulin, gonadotropin-releasing hormone, and cocaine- and amphetamine-regulated transcript (CART). Here, we show that CPE KO mice, an obese animal model, have low bone mineral density (BMD) accompanied by elevated plasma CTX-1 (carboxy-terminal collagen crosslinks), and osteocalcin, indicators of increased bone turnover. Receptor activator for NF-kappaB ligand (RANKL) expression was elevated approximately 2-fold relative to osteoprotegerin in the femur of KO animals, suggesting increased osteoclastic activity in the KO mice. In the hypothalamus, mature CART, a peptide involved in eating behavior and implicated in bone metabolism, was undetectable. The melanocortin and neuropeptide Y (NPY) systems in the hypothalamus have also been implicated in bone remodeling, since MC4R KO and NPY KO mice have increased BMD. However, reduction of alpha-MSH, the primary ligand of MC4R by up to 94% and the lack of detectable NPY in the hypothalamus of CPE KO do not recapitulate the single-gene KO phenotypes. This study highlights the complex physiological interplay between peptides involved in energy metabolism and bone formation and furthermore suggests the possibility that patients, bearing CPE and CART mutations leading to inactive forms of these molecules, may be at a higher risk of developing osteoporosis.


The Journal of Clinical Endocrinology and Metabolism | 2016

Non-Lethal Type VIII Osteogenesis Imperfecta Has Elevated Bone Matrix Mineralization

Nadja Fratzl-Zelman; Aileen M. Barnes; Mary Ann Weis; Erin Carter; Theresa E. Hefferan; Giorgio Perino; Weizhong Chang; Peter A. Smith; Paul Roschger; Klaus Klaushofer; Francis H. Glorieux; David R. Eyre; Cathleen L. Raggio; Frank Rauch; Joan C. Marini

CONTEXT Type VIII osteogenesis imperfecta (OI; OMIM 601915) is a recessive form of lethal or severe OI caused by null mutations in P3H1, which encodes prolyl 3-hydroxylase 1. OBJECTIVES Clinical and bone material description of non-lethal type VIII OI. DESIGN Natural history study of type VIII OI. SETTING Pediatric academic research centers. PATIENTS Five patients with non-lethal type VIII OI, and one patient with lethal type VIII OI. INTERVENTIONS None. MAIN OUTCOME MEASURES Clinical examinations included bone mineral density, radiographs, and serum and urinary metabolites. Bone biopsy samples were analyzed for histomorphometry and bone mineral density distribution by quantitative backscattered electron imaging microscopy. Collagen biochemistry was examined by mass spectrometry, and collagen fibrils were examined by transmission electron microscopy. RESULTS Type VIII OI patients have extreme growth deficiency, an L1-L4 areal bone mineral density Z-score of -5 to -6, and normal bone formation markers. Collagen from bone and skin tissue and cultured osteoblasts and fibroblasts have nearly absent 3-hydroxylation (1-4%). Collagen fibrils showed abnormal diameters and irregular borders. Bone histomorphometry revealed decreased cortical width and very thin trabeculae with patches of increased osteoid, although the overall osteoid surface was normal. Quantitative backscattered electron imaging showed increased matrix mineralization of cortical and trabecular bone, typical of other OI types. However, the proportion of bone with low mineralization was increased in type VIII OI bone, compared to type VII OI. CONCLUSIONS P3H1 is the unique enzyme responsible for collagen 3-hydroxylation in skin and bone. Bone from non-lethal type VIII OI children is similar to type VII, especially bone matrix hypermineralization, but it has distinctive features including extremely thin trabeculae, focal osteoid accumulation, and an increased proportion of low mineralized bone.


The New England Journal of Medicine | 2006

Deficiency of Cartilage-Associated Protein in Recessive Lethal Osteogenesis Imperfecta

Aileen M. Barnes; Weizhong Chang; Roy Morello; Wayne A. Cabral; MaryAnn Weis; David R. Eyre; Sergey Leikin; Elena Makareeva; Natalia Kuznetsova; Thomas E. Uveges; Aarthi Ashok; Armando Flor; John J. Mulvihill; Patrick L. Wilson; Usha T. Sundaram; Brendan Lee; Joan C. Marini


Matrix Biology | 2006

Recessive lethal form of OI caused by null mutations in CRTAP

Aileen M. Barnes; Weizhong Chang; Roy Morello; Wayne A. Cabral; MaryAnn Weis; David R. Eyre; Sergey Leikin; J. Mulvihill; Brendan Lee; Joan C. Marini


Matrix Biology | 2006

Null mutations of P3H1 cause recessive OI_like bone dysplasia

Wayne A. Cabral; Weizhong Chang; Aileen M. Barnes; David R. Eyre; MaryAnn Weis; Sergey Leikin; Elena Makareeva; Natalia Kuznetsova; D.I. Bulas; Joan C. Marini

Collaboration


Dive into the Weizhong Chang's collaboration.

Top Co-Authors

Avatar

Joan C. Marini

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wayne A. Cabral

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Aileen M. Barnes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David R. Eyre

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Sergey Leikin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elena Makareeva

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

MaryAnn Weis

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Cathleen L. Raggio

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar

Natalia Kuznetsova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Peter A. Smith

Shriners Hospitals for Children

View shared research outputs
Researchain Logo
Decentralizing Knowledge