Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wen-Biao Gan is active.

Publication


Featured researches published by Wen-Biao Gan.


Nature Neuroscience | 2005

ATP mediates rapid microglial response to local brain injury in vivo.

Dimitrios Davalos; Jaime Grutzendler; Guang Yang; Jiyun V. Kim; Yi Zuo; Steffen Jung; Dan R. Littman; Michael L. Dustin; Wen-Biao Gan

Parenchymal microglia are the principal immune cells of the brain. Time-lapse two-photon imaging of GFP-labeled microglia demonstrates that the fine termini of microglial processes are highly dynamic in the intact mouse cortex. Upon traumatic brain injury, microglial processes rapidly and autonomously converge on the site of injury without cell body movement, establishing a potential barrier between the healthy and injured tissue. This rapid chemotactic response can be mimicked by local injection of ATP and can be inhibited by the ATP-hydrolyzing enzyme apyrase or by blockers of G protein–coupled purinergic receptors and connexin channels, which are highly expressed in astrocytes. The baseline motility of microglial processes is also reduced significantly in the presence of apyrase and connexin channel inhibitors. Thus, extracellular ATP regulates microglial branch dynamics in the intact brain, and its release from the damaged tissue and surrounding astrocytes mediates a rapid microglial response towards injury.


Nature | 2002

Long-term dendritic spine stability in the adult cortex

Jaime Grutzendler; Narayanan Kasthuri; Wen-Biao Gan

The structural dynamics of synapses probably has a crucial role in the development and plasticity of the nervous system. In the mammalian brain, the vast majority of excitatory axo-dendritic synapses occur on dendritic specializations called ‘spines’. However, little is known about their long-term changes in the intact developing or adult animal. To address this question we developed a transcranial two-photon imaging technique to follow identified spines of layer-5 pyramidal neurons in the primary visual cortex of living transgenic mice expressing yellow fluorescent protein. Here we show that filopodia-like dendritic protrusions, extending and retracting over hours, are abundant in young animals but virtually absent from the adult. In young mice, within the ‘critical period’ for visual cortex development, ∼73% of spines remain stable over a one-month interval; most changes are associated with spine elimination. In contrast, in adult mice, the overwhelming majority of spines (∼96%) remain stable over the same interval with a half-life greater than 13 months. These results indicate that spines, initially plastic during development, become remarkably stable in the adult, providing a potential structural basis for long-term information storage.


Nature | 2009

Stably maintained dendritic spines are associated with lifelong memories

Guang Yang; Feng Pan; Wen-Biao Gan

Changes in synaptic connections are considered essential for learning and memory formation. However, it is unknown how neural circuits undergo continuous synaptic changes during learning while maintaining lifelong memories. Here we show, by following postsynaptic dendritic spines over time in the mouse cortex, that learning and novel sensory experience lead to spine formation and elimination by a protracted process. The extent of spine remodelling correlates with behavioural improvement after learning, suggesting a crucial role of synaptic structural plasticity in memory formation. Importantly, a small fraction of new spines induced by novel experience, together with most spines formed early during development and surviving experience-dependent elimination, are preserved and provide a structural basis for memory retention throughout the entire life of an animal. These studies indicate that learning and daily sensory experience leave minute but permanent marks on cortical connections and suggest that lifelong memories are stored in largely stably connected synaptic networks.


Neuron | 2005

Development of Long-Term Dendritic Spine Stability in Diverse Regions of Cerebral Cortex

Yi Zuo; Aerie Lin; Paul Chang; Wen-Biao Gan

Synapse formation and elimination occur throughout life, but the magnitude of such changes at distinct developmental stages remains unclear. Using transgenic mice overexpressing yellow fluorescent protein and transcranial two-photon microscopy, we repeatedly imaged dendritic spines on the apical dendrites of layer 5 pyramidal neurons. In young adolescent mice (1-month-old), 13%-20% of spines were eliminated and 5%-8% formed over 2 weeks in barrel, motor, and frontal cortices, indicating a cortical-wide spine loss during this developmental period. As animals mature, there is also a substantial loss of dendritic filopodia involved in spinogenesis. In adult mice (4-6 months old), 3%-5% of spines were eliminated and formed over 2 weeks in various cortical regions. Over 18 months, only 26% of spines were eliminated and 19% formed in adult barrel cortex. Thus, after a concurrent loss of spines and spine precursors in diverse regions of young adolescent cortex, spines become stable and a majority of them can last throughout life.


Nature Neuroscience | 2004

Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches

Julia Tsai; Jaime Grutzendler; Karen Duff; Wen-Biao Gan

Amyloid plaques are a hallmark of Alzheimer disease, but their importance in its pathogenesis is controversial. By neuronal labeling and transcranial two-photon imaging, we show in a transgenic mouse model of Alzheimer disease that dendrites passing through or near fibrillar amyloid deposits undergo spine loss and shaft atrophy, and nearby axons develop large varicosities, together leading to neurite breakage and large-scale, permanent disruption of neuronal connections. Thus, fibrillar amyloid deposition is more detrimental to neuronal circuitry than previously thought, underscoring the importance of prevention and early clearance of plaques.


Nature | 2005

Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex

Yi Zuo; Guang Yang; Elaine Kwon; Wen-Biao Gan

A substantial decrease in the number of synapses occurs in the mammalian brain from the late postnatal period until the end of life. Although experience plays an important role in modifying synaptic connectivity, its effect on this nearly lifelong synapse loss remains unknown. Here we used transcranial two-photon microscopy to visualize postsynaptic dendritic spines in layer I of the barrel cortex in transgenic mice expressing yellow fluorescent protein. We show that in young adolescent mice, long-term sensory deprivation through whisker trimming prevents net spine loss by preferentially reducing the rate of ongoing spine elimination, not by increasing the rate of spine formation. This effect of deprivation diminishes as animals mature but still persists in adulthood. Restoring sensory experience after adolescent deprivation accelerates spine elimination. Similar to sensory manipulation, the rate of spine elimination decreases after chronic blockade of NMDA (N-methyl-d-aspartate) receptors with the antagonist MK801, and accelerates after drug withdrawal. These studies of spine dynamics in the primary somatosensory cortex suggest that experience plays an important role in the net loss of synapses over most of an animals lifespan, particularly during adolescence.


Nature Neuroscience | 2007

Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex

Hua-Tai Xu; Feng Pan; Guang Yang; Wen-Biao Gan

Determining the degree of synapse formation and elimination is essential for understanding the structural basis of brain plasticity and pathology. We show that in vivo imaging of dendritic spine dynamics through an open-skull glass window, but not a thinned-skull window, is associated with high spine turnover and substantial glial activation during the first month after surgery. These findings help to explain existing discrepancies in the degree of dendritic spine plasticity observed in the mature cortex.


Annual Review of Physiology | 2009

Dendritic Spine Dynamics

D. Harshad Bhatt; Shengxiang Zhang; Wen-Biao Gan

Dendritic spines are the postsynaptic components of most excitatory synapses in the mammalian brain. Spines accumulate rapidly during early postnatal development and undergo a substantial loss as animals mature into adulthood. In past decades, studies have revealed that the number and size of dendritic spines are regulated by a variety of gene products and environmental factors, underscoring the dynamic nature of spines and their importance to brain plasticity. Recently, in vivo time-lapse imaging of dendritic spines in the cerebral cortex suggests that, although spines are highly plastic during development, they are remarkably stable in adulthood, and most of them last throughout life. Therefore, dendritic spines may provide a structural basis for lifelong information storage, in addition to their well-established role in brain plasticity. Because dendritic spines are the key elements for information acquisition and retention, understanding how spines are formed and maintained, particularly in the intact brain, will likely provide fundamental insights into how the brain possesses the extraordinary capacity to learn and to remember.


Nature Methods | 2013

An optimized fluorescent probe for visualizing glutamate neurotransmission

Jonathan S. Marvin; Bart G. Borghuis; Lin Tian; Joseph Cichon; Mark T. Harnett; Jasper Akerboom; Andrew Gordus; Sabine L. Renninger; Tsai-Wen Chen; Cornelia I. Bargmann; Michael B. Orger; Eric R. Schreiter; Jonathan B. Demb; Wen-Biao Gan; S. Andrew Hires; Loren L. Looger

We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus–evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.


The Journal of Neuroscience | 2005

Defective Neuromuscular Synapses in Mice Lacking Amyloid Precursor Protein (APP) and APP-Like Protein 2

Pei Wang; Guang Yang; Dennis R. Mosier; Paul Chang; Tahire Zaidi; Yan Dao Gong; Nan Ming Zhao; Bertha Dominguez; Kuo-Fen Lee; Wen-Biao Gan; Hui Zheng

Biochemical and genetic studies place the amyloid precursor protein (APP) at the center stage of Alzheimers disease (AD) pathogenesis. Although mutations in the APP gene lead to dominant inheritance of familial AD, the normal function of APP remains elusive. Here, we report that the APP family of proteins plays an essential role in the development of neuromuscular synapses. Mice deficient in APP and its homolog APP-like protein 2 (APLP2) exhibit aberrant apposition of presynaptic marker proteins with postsynaptic acetylcholine receptors and excessive nerve terminal sprouting. The number of synaptic vesicles at presynaptic terminals is dramatically reduced. These structural abnormalities are accompanied by defective neurotransmitter release and a high incidence of synaptic failure. Our results identify APP/APLP2 as key regulators of structure and function of developing neuromuscular synapses.

Collaboration


Dive into the Wen-Biao Gan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel Wong

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Wai T. Wong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge