Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wen-Dar Lin is active.

Publication


Featured researches published by Wen-Dar Lin.


Plant Physiology | 2011

iTRAQ Protein Profile Analysis of Arabidopsis Roots Reveals New Aspects Critical for Iron Homeostasis

Ping Lan; Wenfeng Li; Tuan-Nan Wen; Jeng-Yuan Shiau; Yu-Ching Wu; Wen-Dar Lin; Wolfgang Schmidt

Iron (Fe) deficiency is a major constraint for plant growth and affects the quality of edible plant parts. To investigate the mechanisms underlying Fe homeostasis in plants, Fe deficiency-induced changes in the protein profile of Arabidopsis (Arabidopsis thaliana) roots were comprehensively analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification) differential liquid chromatography-tandem mass spectrometry on a LTQ-Orbitrap with high-energy collision dissociation. A total of 4,454 proteins were identified with a false discovery rate of less than 1.1%, and 2,882 were reliably quantified. A subset of 101 proteins was differentially expressed upon Fe deficiency. The changes in protein profiles upon Fe deficiency show low congruency with previously reported alterations in transcript levels, indicating posttranscriptional changes, and provide complementary information on Fe deficiency-induced processes. The abundance of proteins involved in the synthesis/regeneration of S-adenosylmethionine, the phenylpropanoid pathway, the response to oxidative stress, and respiration was highly increased by Fe deficiency. Using Fe-responsive proteins as bait, genome-wide fishing for partners with predictable or confirmed interologs revealed that RNA processing and ribonucleoprotein complex assembly may represent critical processes that contribute to the regulation of root responses to Fe deficiency, possibly by biasing translation efficiency.


Plant Physiology | 2013

Mutually Exclusive Alterations in Secondary Metabolism are Critical for the Uptake of Insoluble Iron Compounds by Arabidopsis and Medicago truncatula

Jorge Rodríguez-Celma; Wen-Dar Lin; Guin-Mau Fu; Javier Abadía; Ana-Flor López-Millán; Wolfgang Schmidt

Coexpression and promoter analysis under iron deficiency in roots of Arabidopsis and Medicago demonstrates the integral role for production and secretion of compounds that facilitate the uptake of reduction-based iron acquisition. The generally low bioavailability of iron in aerobic soil systems forced plants to evolve sophisticated genetic strategies to improve the acquisition of iron from sparingly soluble and immobile iron pools. To distinguish between conserved and species-dependent components of such strategies, we analyzed iron deficiency-induced changes in the transcriptome of two model species, Arabidopsis (Arabidopsis thaliana) and Medicago truncatula. Transcriptional profiling by RNA sequencing revealed a massive up-regulation of genes coding for enzymes involved in riboflavin biosynthesis in M. truncatula and phenylpropanoid synthesis in Arabidopsis upon iron deficiency. Coexpression and promoter analysis indicated that the synthesis of flavins and phenylpropanoids is tightly linked to and putatively coregulated with other genes encoding proteins involved in iron uptake. We further provide evidence that the production and secretion of phenolic compounds is critical for the uptake of iron from sources with low bioavailability but dispensable under conditions where iron is readily available. In Arabidopsis, homozygous mutations in the Fe(II)- and 2-oxoglutarate-dependent dioxygenase family gene F6′H1 and defects in the expression of PLEIOTROPIC DRUG RESISTANCE9, encoding a putative efflux transporter for products from the phenylpropanoid pathway, compromised iron uptake from an iron source of low bioavailability. Both mutants were partially rescued when grown alongside wild-type Arabidopsis or M. truncatula seedlings, presumably by secreted phenolics and flavins. We concluded that production and secretion of compounds that facilitate the uptake of iron is an essential but poorly understood aspect of the reduction-based iron acquisition strategy, which is likely to contribute substantially to the efficiency of iron uptake in natural conditions.


Plant Physiology | 2010

Transcriptional Profiling of the Arabidopsis Iron Deficiency Response Reveals Conserved Transition Metal Homeostasis Networks

Thomas J.W. Yang; Wen-Dar Lin; Wolfgang Schmidt

Iron (Fe) deficiency is counteracted by a suite of responses to ensure maintenance of vital processes for which Fe is essential. Here, we report on transcriptional changes upon Fe deficiency, investigated in two Arabidopsis (Arabidopsis thaliana) accessions, Columbia (Col-0) and C24. Functional modules of the Arabidopsis Fe deficiency syndrome were inferred from clustering of Fe-responsive genes according to their coexpression. It was found that the redistribution of transition metals is an integral part of the reduction-based response to Fe starvation. The differential expression of metal transporters under the control of the FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR appeared to reflect an anticipated reaction rather than a response to the actual change in metal distribution. In contrast, the regulation of the zinc transporters ZRT/IRT-LIKE PROTEIN2 (ZIP2), ZIP3, ZIP4, and ZIP9 was dependent on the cellular zinc level, and their regulation by Fe was a secondary effect. Cellular Fe homeostasis was found to be closely coupled to Fe-related processes in the plastids. Using clustered genes as bait in gene-fishing experiments, we were able to attribute potentially important roles for gene candidates that have no previously described function in the Fe deficiency response. These results demonstrate a conceptually novel and integrative view into the regulation and interactions that allow Arabidopsis to adapt to suboptimal Fe availability.


Plant Physiology | 2011

Coexpression-Based Clustering of Arabidopsis Root Genes Predicts Functional Modules in Early Phosphate Deficiency Signaling

Wen-Dar Lin; Ya-Yun Liao; Thomas J.W. Yang; Chao-Yu Pan; Thomas J. Buckhout; Wolfgang Schmidt

Phosphate (Pi) deficiency triggers the differential expression of a large set of genes, which communally adapt the plant to low Pi bioavailability. To infer functional modules in early transcriptional responses to Pi deficiency, we conducted time-course microarray experiments and subsequent coexpression-based clustering of Pi-responsive genes by pairwise comparison of genes against a customized database. Three major clusters, enriched in genes putatively functioning in transcriptional regulation, root hair formation, and developmental adaptations, were predicted from this analysis. Validation of gene expression by quantitative reverse transcription-PCR revealed that transcripts from randomly selected genes were robustly induced within the first hour after transfer to Pi-deplete medium. Pectin-related processes were among the earliest and most robust responses to Pi deficiency, indicating that cell wall alterations are critical in the early transcriptional response to Pi deficiency. Phenotypical analysis of homozygous mutants defective in the expression of genes from the root hair cluster revealed eight novel genes involved in Pi deficiency-induced root hair elongation. The plants responded rapidly to Pi deficiency by the induction of a subset of transcription factors, followed by a repression of genes involved in cell wall alterations. The combined results provide a novel, integrated view at a systems level of the root responses that acclimate Arabidopsis (Arabidopsis thaliana) to suboptimal Pi levels.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation.

Ravi Kesari; Jesse R. Lasky; Joji Grace Villamor; David L. Des Marais; Ying-Jiun C. Chen; Tzu-Wen Liu; Wen-Dar Lin; Thomas E. Juenger; Paul E. Verslues

Drought-induced proline accumulation is widely observed in plants but its regulation and adaptive value are not as well understood. Proline accumulation of the Arabidopsis accession Shakdara (Sha) was threefold less than that of Landsberg erecta (Ler) and quantitative trait loci mapping identified a reduced function allele of the proline synthesis enzyme Δ1-pyrroline-5-carboxylate synthetase1 (P5CS1) as a basis for the lower proline of Sha. Sha P5CS1 had additional TA repeats in intron 2 and a G-to-T transversion in intron 3 that were sufficient to promote alternative splicing and production of a nonfunctional transcript lacking exon 3 (exon 3-skip P5CS1). In Sha, and additional accessions with the same intron polymorphisms, the nonfunctional exon 3-skip P5CS1 splice variant constituted as much as half of the total P5CS1 transcript. In a larger panel of Arabidopsis accessions, low water potential-induced proline accumulation varied by 10-fold and variable production of exon 3-skip P5CS1 among accessions was an important, but not the sole, factor underlying variation in proline accumulation. Population genetic analyses suggest that P5CS1 may have evolved under positive selection, and more extensive correlation of exon 3-skip P5CS1 production than proline abundance with climate conditions of natural accessions also suggest a role of P5CS1 in local adaptation to the environment. These data identify a unique source of alternative splicing in plants, demonstrate a role of exon 3-skip P5CS1 in natural variation of proline metabolism, and suggest an association of P5CS1 and its alternative splicing with environmental adaptation.


The Plant Cell | 2013

Translational Landscape of Photomorphogenic Arabidopsis

Ming-Jung Liu; Szu-Hsien Wu; Jing-Fen Wu; Wen-Dar Lin; Yi-Chen Wu; Tsung-Ying Tsai; Huang-Lung Tsai; Shu-Hsing Wu

This work describes translational activity at single-nucleotide resolution in deetiolating Arabidopsis. Light selectively triggers the increase or decrease of ribosome density of specific transcripts. This work also reports the global effects of upstream open reading frames and microRNAs in negatively regulating the translation of annotated open reading frames in deetiolating Arabidopsis. Translational control plays a vital role in regulating gene expression. To decipher the molecular basis of translational regulation in photomorphogenic Arabidopsis thaliana, we adopted a ribosome profiling method to map the genome-wide positions of translating ribosomes in Arabidopsis etiolated seedlings in the dark and after light exposure. We found that, in Arabidopsis, a translating ribosome protects an ∼30-nucleotide region and moves in three-nucleotide periodicity, characteristics also observed in Saccharomyces cerevisiae and mammals. Light enhanced the translation of genes involved in the organization and function of chloroplasts. Upstream open reading frames initiated by ATG but not CTG mediated translational repression of the downstream main open reading frame. Also, we observed widespread translational repression of microRNA target genes in both light- and dark-grown Arabidopsis seedlings. This genome-wide characterization of transcripts undergoing translation at the nucleotide-resolution level reveals that a combination of multiple translational mechanisms orchestrates and fine-tunes the translation of diverse transcripts in plants with environmental responsiveness.


Genome Biology | 2013

Mapping gene activity of Arabidopsis root hairs

Ping Lan; Wenfeng Li; Wen-Dar Lin; Simonetta Santi; Wolfgang Schmidt

BackgroundQuantitative information on gene activity at single cell-type resolution is essential for the understanding of how cells work and interact. Root hairs, or trichoblasts, tubular-shaped outgrowths of specialized cells in the epidermis, represent an ideal model for cell fate acquisition and differentiation in plants.ResultsHere, we provide an atlas of gene and protein expression in Arabidopsis root hair cells, generated by paired-end RNA sequencing and LC/MS-MS analysis of protoplasts from plants containing a pEXP7-GFP reporter construct. In total, transcripts of 23,034 genes were detected in root hairs. High-resolution proteome analysis led to the reliable identification of 2,447 proteins, 129 of which were differentially expressed between root hairs and non-root hair tissue. Dissection of pre-mRNA splicing patterns showed that all types of alternative splicing were cell type-dependent, and less complex in EXP7-expressing cells when compared to non-root hair cells. Intron retention was repressed in several transcripts functionally related to root hair morphogenesis, indicative of a cell type-specific control of gene expression by alternative splicing of pre-mRNA. Concordance between mRNA and protein expression was generally high, but in many cases mRNA expression was not predictive for protein abundance.ConclusionsThe integrated analysis shows that gene activity in root hairs is dictated by orchestrated, multilayered regulatory mechanisms that allow for a cell type-specific composition of functional components.


Genome Biology | 2013

Genome-wide analysis of light-regulated alternative splicing mediated by photoreceptors in Physcomitrella patens

Hshin-Ping Wu; Yi-shin Su; Hsiu-Chen Chen; Yu-Rong Chen; Chia-Chen Wu; Wen-Dar Lin; Shih-Long Tu

BackgroundLight is one of the most important factors regulating plant growth and development. Light-sensing photoreceptors tightly regulate gene expression to control photomorphogenic responses. Although many levels of gene expression are modulated by photoreceptors, regulation at the mRNA splicing step remains unclear.ResultsWe performed high-throughput mRNA sequencing to analyze light-responsive changes in alternative splicing in the moss Physcomitrella patens, and found that a large number of alternative splicing events were induced by light in the moss protonema. Light-responsive intron retention preferentially occurred in transcripts involved in photosynthesis and translation. Many of the alternatively spliced transcripts were expressed from genes with a function relating to splicing or light signaling, suggesting a potential impact on pre-mRNA splicing and photomorphogenic gene regulation in response to light. Moreover, most light-regulated intron retention was induced immediately upon light exposure, while motif analysis identified a repetitive GAA motif that may function as an exonic regulatory cis element in light-mediated alternative splicing. Further analysis in gene-disrupted mutants was consistent with a function for multiple red-light photoreceptors in the upstream regulation of light-responsive alternative splicing.ConclusionsOur results indicate that intensive alternative splicing occurs in non-vascular plants and that, during photomorphogenesis, light regulates alternative splicing with transcript selectivity. We further suggest that alternative splicing is rapidly fine-tuned by light to modulate gene expression and reorganize metabolic processes, and that pre-mRNA cis elements are involved in photoreceptor-mediated splicing regulation.


Plant Physiology | 2013

Genome-Wide Detection of Condition-Sensitive Alternative Splicing in Arabidopsis Roots

Wenfeng Li; Wen-Dar Lin; Prasun Ray; Ping Lan; Wolfgang Schmidt

Transcriptional profiling of roots subjected to iron and phosphate deficiency revealed stress-specific changes in splicing patterns that are largely independent of differential gene expression, providing a mechanism adapting gene activity to environmental conditions. Iron (Fe) deficiency is a world-wide nutritional disorder in both plants and humans, resulting from its restricted bioavailability for plants and, subsequently, low Fe concentration in edible plant parts. Plants have evolved sophisticated mechanisms to alleviate Fe deficiency, with the aim of recalibrating metabolic fluxes and maintaining cellular Fe homeostasis. To analyze condition-sensitive changes in precursor mRNA (pre-mRNA) splicing pattern, we mapped the transcriptome of Fe-deficient and Fe-sufficient Arabidopsis (Arabidopsis thaliana) roots using the RNA sequencing technology and a newly developed software toolbox, the Read Analysis & Comparison Kit in Java (RACKJ). In alternatively spliced genes, stress-related Gene Ontology categories were overrepresented, while housekeeping cellular functions were mainly transcriptionally controlled. Fe deficiency increased the complexity of the splicing pattern and triggered the differential alternative splicing of 313 genes, the majority of which had differentially retained introns. Several genes with important functions in Fe acquisition and homeostasis were both differentially expressed and differentially alternatively spliced upon Fe deficiency, indicating a complex regulation of gene activity in Fe-deficient conditions. A comparison with a data set for phosphate-deficient plants suggests that changes in splicing patterns are nutrient specific and not or not chiefly caused by stochastic fluctuations. In sum, our analysis identified extensive posttranscriptional control, biasing the abundance and activity of proteins in a condition-dependent manner. The production of a mixture of functional and nonfunctional transcripts may provide a means to fine-tune the abundance of transcripts with critical importance in cellular Fe homeostasis. It is assumed that differential gene expression and nutrient deficiency-induced changes in pre-mRNA splicing represent parallel, but potentially interacting, regulatory mechanisms.


Plant Physiology | 2014

Genome-Wide Analysis of Heat-Sensitive Alternative Splicing in Physcomitrella patens

Chiung-Yun Chang; Wen-Dar Lin; Shih-Long Tu

Alternative splicing is responsive to elevated temperature in nonvascular plants and can be rapidly modulated in specific genes for plants to cope with heat stress. Plant growth and development are constantly influenced by temperature fluctuations. To respond to temperature changes, different levels of gene regulation are modulated in the cell. Alternative splicing (AS) is a widespread mechanism increasing transcriptome complexity and proteome diversity. Although genome-wide studies have revealed complex AS patterns in plants, whether AS impacts the stress defense of plants is not known. We used heat shock (HS) treatments at nondamaging temperature and messenger RNA sequencing to obtain HS transcriptomes in the moss Physcomitrella patens. Data analysis identified a significant number of novel AS events in the moss protonema. Nearly 50% of genes are alternatively spliced. Intron retention (IR) is markedly repressed under elevated temperature but alternative donor/acceptor site and exon skipping are mainly induced, indicating differential regulation of AS in response to heat stress. Transcripts undergoing heat-sensitive IR are mostly involved in specific functions, which suggests that plants regulate AS with transcript specificity under elevated temperature. An exonic GAG-repeat motif in these IR regions may function as a regulatory cis-element in heat-mediated AS regulation. A conserved AS pattern for HS transcription factors in P. patens and Arabidopsis (Arabidopsis thaliana) reveals that heat regulation for AS evolved early during land colonization of green plants. Our results support that AS of specific genes, including key HS regulators, is fine-tuned under elevated temperature to modulate gene regulation and reorganize metabolic processes.

Collaboration


Dive into the Wen-Dar Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chung-Der Hsiao

Chung Yuan Christian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge