Wen-Hong Zhu
Canadian Space Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wen-Hong Zhu.
Robotica | 2014
Hayder F. N. Al-Shuka; F. Allmendinger; Burkhard Corves; Wen-Hong Zhu
Biped robots have gained much attention for decades. A variety of researches have been conducted to make them able to assist or even substitute for humans in performing special tasks. In addition, studying biped robots is important in order to understand human locomotion and to develop and improve control strategies for prosthetic and orthotic limbs. This paper discusses the main challenges encountered in the design of biped robots, such as modeling, stability and their walking patterns. The subject is difficult to deal with because the biped mechanism intervenes with mechanics, control, electronics and artificial intelligence. In this paper, we collect and introduce a systematic discussion of modeling, walking pattern generators and stability for a biped robot.
Robotica | 2016
Cristóbal Ochoa Luna; Mohammad Habibur Rahman; Maarouf Saad; Philippe S. Archambault; Wen-Hong Zhu
Exoskeleton robots, which can be worn on human limbs to improve or to rehabilitate their function, are currently of great importance. When these robots are used in rehabilitation, one aspect that must be fulfilled is their capacity to adapt to different patients without significantly varying their performance. This paper describes the application of a relatively new control technique called virtual decomposition control (VDC) to a seven degrees-of-freedom (DOF) exoskeleton robot arm, named ETS-MARSE. The VDC approach mainly involves decomposing complex systems into subsystems, and using the resulting simpler dynamics to conduct control computation, while strictly ensuring global stability and having the subsystem dynamics interactions rigorously managed and maintained by means of virtual power flow. This approach is used to deal with different masses, joint stiffness and biomechanical variations of diverse subjects, allowing the control technique to naturally adapt to the variances involved and to maintain a successful control task. The results obtained in real time on a 7DOF exoskeleton robot arm show the effectiveness of the approach.
Lecture Notes on Software Engineering | 2013
Hayder F. N. Al-Shuka; Burkhard Corves; Wen-Hong Zhu
Abstract—This paper concentrates on three important points: the selection of the suitable direct method used for suboptimal control of the biped robot, the selection of the appropriate nonlinear programming (NLP) algorithm that searches for the global minimum rather than the local minimum, and the effect of different constraints on the energy of the biped robot. To perform the mentioned points, the advantages and disadvantages of the optimal control methods were illustrated. The inverse-dynamics based optimization is preferred because of the ability to convert the original optimal control into algebraic equations which are easy to deal with. The inverse-dynamics-based optimization was classified as spline and the finite difference based optimization. Due to the easy use of the latter, it was used for investigating seven cases with different constraints for 6-DOF biped robot during the single support phase (SSP). Hybrid genetic-sequential quadratic programming (GA-SQP) was used for simulation of the target robot with MATLAB. It can be concluded that more imposed constraints on the biped robot, more energy is needed. In general, more energy can be required in the case of (1) restriction of the swing foot to be level to the ground and (2) reducing the hip height or constraining the hip to move in constant height.
International Journal of Computer Applications | 2014
Hayder F. N. Al-Shuka; Burkhard Corves; Wen-Hong Zhu
The aim of this paper is to derive the equations of motion for biped robot during different walking phases using two wellknown formulations: Euler-Lagrange (E-L) and Newton-Euler (N-E) equations. The modeling problems of biped robots lie in their varying configurations during locomotion; they could be fully actuated during the single support phase (SSP) and overactuated during the double support phase (DSP). Therefore, first, the E-L equations of 6-link biped robot are described in some details for dynamic modeling during different walking phases with concentration on the DSP. Second, the detailed description of modified recursive Newton-Euler (N-E) formulation (which is very useful for modeling complex robotic system) is illustrated with a novel strategy for solution of the over-actuation/discontinuity problem. The derived equations of motion of the target biped for both formulations are suitable for control laws if the analyzer needs to deal with control problems. As expected, the N-E formulation is superior to the E-L concerning dealing with high degrees-offreedom (DoFs) robotic systems (larger than 6 DoFs). General Terms Multibody dynamics, Robotics, Biped robots.
international symposium on industrial electronics | 2006
Charles Fallaha; Maarouf Saad; Hadi Y. Kanaan; Wen-Hong Zhu
This paper introduces a new approach based on the use of nonlinear switching functions in sliding mode control. These nonlinear functions are used to eliminate transient constraints on the control input and therefore to increase the speed performance of the controller without having a negative effect on the control input. This approach is brought up in a general perspective to nth order single input systems. In order to validate the superiority of this novel approach over the conventional sliding mode control, simulation results of a current-controlled magnetic levitation system are compared for both the conventional and the new techniques
International Journal of Computer Applications | 2014
Hayder F. N. Al-Shuka; Burkhard Corves; Wen-Hong Zhu; Bram Vanderborght
paper proposes a thorough algorithm that can tune the walking parameters (hip height, distance traveled by the hip, and times of single support phase SSP and double support phase DSP) to satisfy the kinematic and dynamic constraints: singularity condition at the knee joint, zero-moment point (ZMP) constraint, and unilateral contact constraints. Two walking patterns of biped locomotion have been investigated using the proposed algorithm. The distinction of these walking patterns is that the stance foot will stay fixed during the first sub-phase of the DSP for pattern 1, while it will rotate simultaneously at beginning of the DSP for pattern 2. A seven-link biped robot is simulated with the proposed algorithm. The results show that the proposed algorithm can compensate for the deviation of the ZMP trajectory due to approximate model of the pendulum model; thus balanced motion could be generated. In addition, it is shown that keeping the stance foot fixed during the first sub-phase of the DSP is necessary to evade deviation of ZMP from its desired trajectory resulting in unbalanced motion; thus, walking pattern 1 is preferred practically.
Robotica | 2016
Hayder F. N. Al-Shuka; Burkhard Corves; Wen-Hong Zhu; Bram Vanderborght
Researchers dream of developing autonomous humanoid robots which behave/walk like a human being. Biped robots, although complex, have the greatest potential for use in human-centred environments such as the home or office. Studying biped robots is also important for understanding human locomotion and improving control strategies for prosthetic and orthotic limbs. Control systems of humans walking in cluttered environments are complex, however, and may involve multiple local controllers and commands from the cerebellum. Although biped robots have been of interest over the last four decades, no unified stability/balance criterion adopted for stabilization of miscellaneous walking/running modes of biped robots has so far been available. The literature is scattered and it is difficult to construct a unified background for the balance strategies of biped motion. The zero-moment point (ZMP) criterion, however, is a conservative indicator of stabilized motion for a class of biped robots. Therefore, we offer a systematic presentation of multi-level balance controllers for stabilization and balance recovery of ZMP-based humanoid robots.
Applied Bionics and Biomechanics | 2018
Hayder F. N. Al-Shuka; Steffen Leonhardt; Wen-Hong Zhu; Rui Song; Chao Ding; Yibin Li
There are two main categories of force control schemes: hybrid position-force control and impedance control. However, the former does not take into account the dynamic interaction between the robots end effector and the environment. In contrast, impedance control includes regulation and stabilization of robot motion by creating a mathematical relationship between the interaction forces and the reference trajectories. It involves an energetic pair of a flow and an effort, instead of controlling a single position or a force. A mass-spring-damper impedance filter is generally used for safe interaction purposes. Tuning the parameters of the impedance filter is important and, if an unsuitable strategy is used, this can lead to unstable contact. Humans, however, have exceptionally effective control systems with advanced biological actuators. An individual can manipulate muscle stiffness to comply with the interaction forces. Accordingly, the parameters of the impedance filter should be time varying rather than value constant in order to match human behavior during interaction tasks. Therefore, this paper presents an overview of impedance control strategies including standard and extended control schemes. Standard controllers cover impedance and admittance architectures. Extended control schemes include admittance control with force tracking, variable impedance control, and impedance control of flexible joints. The categories of impedance control and their features and limitations are well introduced. Attention is paid to variable impedance control while considering the possible control schemes, the performance, stability, and the integration of constant compliant elements with the host robot.
international conference on informatics in control automation and robotics | 2016
Abdelkrim Brahmi; Maarouf Saad; Guy Gauthier; Wen-Hong Zhu; Jawhar Ghommam
This paper presents an adaptive control scheme for a mobile manipulator robot based on the virtual decomposition control (VDC). The control strategy was tested on three degrees of freedom manipulator arm mounted on two degrees of freedom mobile platform to track a desired trajectory. The desired trajectory is obtained from the workspace trajectory using the inverse kinematics. Differently to the known decentralized control that divides the mobile manipulator into two subsystems, in this paper, the mobile manipulator has N degrees of freedom, divided virtually into N subsystems. The applicability of the proposed scheme is demonstrated in real time validation. The experimental results show the effectiveness of the VDC approach.
Robotica | 2014
Hayder F. N. Al-Shuka; Burkhard Corves; Wen-Hong Zhu