Wen-Hui Lin
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wen-Hui Lin.
The Plant Cell | 2009
Liying Zhang; Ming-Yi Bai; Jinxia Wu; Jia-Ying Zhu; Hao Wang; Zhiguo Zhang; Wenfei Wang; Yu Sun; Jun Zhao; Xuehui Sun; Hongjuan Yang; Yunyuan Xu; Soo-Hwan Kim; Shozo Fujioka; Wen-Hui Lin; Kang Chong; Tiegang Lu; Zhi-Yong Wang
In rice (Oryza sativa), brassinosteroids (BRs) induce cell elongation at the adaxial side of the lamina joint to promote leaf bending. We identified a rice mutant (ili1-D) showing an increased lamina inclination phenotype similar to that caused by BR treatment. The ili1-D mutant overexpresses an HLH protein homologous to Arabidopsis thaliana Paclobutrazol Resistance1 (PRE1) and the human Inhibitor of DNA binding proteins. Overexpression and RNA interference suppression of ILI1 increase and reduce, respectively, rice laminar inclination, confirming a positive role of ILI1 in leaf bending. ILI1 and PRE1 interact with basic helix-loop-helix (bHLH) protein IBH1 (ILI1 binding bHLH), whose overexpression causes erect leaf in rice and dwarfism in Arabidopsis. Overexpression of ILI1 or PRE1 increases cell elongation and suppresses dwarf phenotypes caused by overexpression of IBH1 in Arabidopsis. Thus, ILI1 and PRE1 may inactivate inhibitory bHLH transcription factors through heterodimerization. BR increases the RNA levels of ILI1 and PRE1 but represses IBH1 through the transcription factor BZR1. The spatial and temporal expression patterns support roles of ILI1 in laminar joint bending and PRE1/At IBH1 in the transition from growth of young organs to growth arrest. These results demonstrate a conserved mechanism of BR regulation of plant development through a pair of antagonizing HLH/bHLH transcription factors that act downstream of BZR1 in Arabidopsis and rice.
Developmental Cell | 2010
Xiao-Min Luo; Wen-Hui Lin; Shengwei Zhu; Jia-Ying Zhu; Yu Sun; Xi-Ying Fan; Menglin Cheng; Yaqi Hao; Eunkyoo Oh; Miaomiao Tian; Lijing Liu; Ming Zhang; Qi Xie; Kang Chong; Zhi-Yong Wang
Light and brassinosteroid (BR) antagonistically regulate the developmental switch from etiolation in the dark to photomorphogenesis in the light in plants. Here, we identify GATA2 as a key transcriptional regulator that mediates the crosstalk between BR- and light-signaling pathways. Overexpression of GATA2 causes constitutive photomorphogenesis in the dark, whereas suppression of GATA2 reduces photomorphogenesis caused by light, BR deficiency, or the constitutive photomorphogenesis mutant cop1. Genome profiling and chromatin immunoprecipitation experiments show that GATA2 directly regulates genes that respond to both light and BR. BR represses GATA2 transcription through the BR-activated transcription factor BZR1, whereas light causes accumulation of GATA2 protein and feedback inhibition of GATA2 transcription. Dark-induced proteasomal degradation of GATA2 is dependent on the COP1 E3 ubiquitin ligase, and COP1 can ubiquitinate GATA2 in vitro. This study illustrates a molecular framework for antagonistic regulation of gene expression and seedling photomorphogenesis by BR and light.
Cell Research | 2004
Wen-Hui Lin; Rui Ye; Hui Ma; Zhi Hong Xu; Hong Wei Xue
ABSTRACTThe phosphatidylinositol (PI) metabolic pathway is considered critical in plant responses to many environmental factors, and previous studies have indicated the involvement of multiple PI-related gene families during cellular responses. Through a detailed analysis of the Arabidopsis thaliana genome, 82 polypeptides were identified as being involved in PI signaling. These could be grouped into different families including PI synthases (PIS), PI-phosphate kinases (PIPK), phospholipases (PL), inositol polyphosphate phosphatases (IPPase), inositol polyphosphate kinases (IPK), PI transfer proteins and putative inositol polyphosphate receptors. The presence of more than 10 isoforms of PIPK, PLC, PLD and IPPase suggested that these genes might be differentially expressed during plant cellular responses or growth and development. Accordingly, DNA chip technology was employed to study the expression patterns of various isoforms. In total, 79 mRNA clones were amplified and used for DNA chip generation. Expression profile analysis was performed using samples that represented multiple tissues or cellular responses. Tested samples included normal leaf, stem and flower tissues, and leaves from plants treated with various hormones (auxin, cytokinin, gibberellin, abscisic acid and brassinosteroid) or environmental factors (temperature, calcium, sodium, drought, salicylic acid and jasmonic acid). Results showed that many PI pathway-related genes were differentially expressed under these experimental conditions. In particular, the different isoforms of each family were specifically expressed in many cases, suggesting their involvement in tissue specificity and cellular responses to environmental conditions. This work provides a starting point for functional studies of the relevant PI-related proteins and may help shed light onto the role of PI pathways in development and cellular responses.
Plant Physiology | 2013
Wen-Bo Jiang; Hui-Ya Huang; Yu-Wei Hu; Shengwei Zhu; Zhi-Yong Wang; Wen-Hui Lin
Brassinosteroid regulates Arabidopsis seed size and shape by transcriptionally modulating specific seed developmental pathways. Seed development is important for agriculture productivity. We demonstrate that brassinosteroid (BR) plays crucial roles in determining the size, mass, and shape of Arabidopsis (Arabidopsis thaliana) seeds. The seeds of the BR-deficient mutant de-etiolated2 (det2) are smaller and less elongated than those of wild-type plants due to a decreased seed cavity, reduced endosperm volume, and integument cell length. The det2 mutant also showed delay in embryo development, with reduction in both the size and number of embryo cells. Pollination of det2 flowers with wild-type pollen yielded seeds of normal size but still shortened shape, indicating that the BR produced by the zygotic embryo and endosperm is sufficient for increasing seed volume but not for seed elongation, which apparently requires BR produced from maternal tissues. BR activates expression of SHORT HYPOCOTYL UNDER BLUE1, MINISEED3, and HAIKU2, which are known positive regulators of seed size, but represses APETALA2 and AUXIN RESPONSE FACTOR2, which are negative regulators of seed size. These genes are bound in vivo by the BR-activated transcription factor BRASSINAZOLE-RESISTANT1 (BZR1), and they are known to influence specific processes of integument, endosperm, and embryo development. Our results demonstrate that BR regulates seed size and seed shape by transcriptionally modulating specific seed developmental pathways.
Cell Research | 2006
Hui Ma; Ying Lou; Wen-Hui Lin; Hong Wei Xue
Multiple repeats of membrane occupation and recognition nexus (MORN) motifs were detected in plant phosphatidylinositl monophosphate kinase (PIPK), a key enzyme in PI-signaling pathway. Structural analysis indicates that all the MORN motifs (with varied numbers at ranges of 7-9), which shared high homologies to those of animal ones, were located at N-terminus and sequentially arranged, except those of OsPIPK1 and AtPIPK7, in which the last MORN motif was separated others by an ∼100 amino-acid “island” region, revealing the presence of two kinds of MORN arrangements in plant PIPKs. Through employing a yeast-based SMET (sequence of membrane-targeting) system, the MORN motifs were shown being able to target the fusion proteins to cell plasma membrane, which were further confirmed by expression of fused MORN-GFP proteins. Further detailed analysis via deletion studies indicated the MORN motifs in OsPIPK1, together with the 104 amino-acid “island” region are involved in the regulation of differential subcellular localization, i.e. plasma membrane or nucleus, of the fused proteins. Fat Western blot analysis of the recombinant MORN polypeptide, expressed in Escherichia coli, showed that MORN motifs could strongly bind to PA and relatively slightly to PI4P and PI(4,5)P2. These results provide informative hints on mechanisms of subcellular localization, as well as regulation of substrate binding, of plant PIPKs.
Plant Physiology | 2005
Wen-Hui Lin; Yuan Wang; Bernd Mueller-Roeber; Charles A. Brearley; Zhihong Xu; Hong-Wei Xue
Phosphatidylinositol signaling pathway and the relevant metabolites are known to be critical to the modulation of different aspects of plant growth, development, and stress responses. Inositol polyphosphate 5-phosphatase is a key enzyme involved in phosphatidylinositol metabolism and is encoded by an At5PTase gene family in Arabidopsis thaliana. A previous study shows that At5PTase11 mediates cotyledon vascular development probably through the regulation of intracellular calcium levels. In this study, we provide evidence that At5PTase13 modulates the development of cotyledon veins through its regulation of auxin homeostasis. A T-DNA insertional knockout mutant, At5pt13-1, showed a defect in development of the cotyledon vein, which was rescued completely by exogenous auxin and in part by brassinolide, a steroid hormone. Furthermore, the mutant had reduced auxin content and altered auxin accumulation in seedlings revealed by the DR5:β-glucuronidase fusion construct in seedlings. In addition, microarray analysis shows that the transcription of key genes responsible for auxin biosynthesis and transport was altered in At5pt13-1. The At5pt13-1 mutant was also less sensitive to auxin inhibition of root elongation. These results suggest that At5PTase13 regulates the homeostasis of auxin, a key hormone controlling vascular development in plants.
The Plant Cell | 2008
Xu Chen; Wen-Hui Lin; Yuan Wang; Sheng Luan; Hong-Wei Xue
Inositol polyphosphate 5-phosphatase (5PTase) is a key enzyme in the phosphatidylinositol metabolic pathway, which plays critical roles in a number of cellular processes in plants. Our previous work implicated the role of 5PTase13, which encodes a WD40-containing type II 5PTase, in hormone-mediated cotyledon vein development. Here, we show that 5PTase13 is also involved in blue light responses in Arabidopsis thaliana. Compared with that in darkness, the expression of 5PTase13 was suppressed by blue light irradiation, and disruption of the gene resulted in shortened hypocotyls and expanded cotyledons. Genetic analysis showed that 5PTase13 acted independently from CRYPTOCHROME1 and CONSTITUTIVE PHOTOMORPHOGENIC1 but interacted functionally with PHOTOTROPIN1 (PHOT1). The expression level of 5PTase13 was significantly enhanced in phot1 single or phot1 phot2 double mutants under blue light, and suppression of 5PTase13 expression rescued the elongated hypocotyls in the phot1 or phot1 phot2 mutants. Further analysis showed that the blue light–induced elevation of cytosolic Ca2+ was inhibited in the phot1 mutant but enhanced in the 5pt13 mutant, suggesting that 5PTase13 antagonizes PHOT1-mediated effects on calcium signaling under blue light.
Plant Physiology | 2005
Jun Xu; Charles A. Brearley; Wen-Hui Lin; Yuan Wang; Rui Ye; Bernd Mueller-Roeber; Zhihong Xu; Hong-Wei Xue
Inositol polyphosphates, such as inositol trisphosphate, are pivotal intracellular signaling molecules in eukaryotic cells. In higher plants the mechanism for the regulation of the type and the level of these signaling molecules is poorly understood. In this study we investigate the physiological function of an Arabidopsis (Arabidopsis thaliana) gene encoding inositol polyphosphate kinase (AtIPK2α), which phosphorylates inositol 1,4,5-trisphosphate successively at the D-6 and D-3 positions, and inositol 1,3,4,5-tetrakisphosphate at D-6, resulting in the generation of inositol 1,3,4,5,6-pentakisphosphate. Semiquantitative reverse transcription-PCR and promoter-β-glucuronidase reporter gene analyses showed that AtIPK2α is expressed in various tissues, including roots and root hairs, stem, leaf, pollen grains, pollen tubes, the flower stigma, and siliques. Transgenic Arabidopsis plants expressing the AtIPK2α antisense gene under its own promoter were generated. Analysis of several independent transformants exhibiting strong reduction in AtIPK2α transcript levels showed that both pollen germination and pollen tube growth were enhanced in the antisense lines compared to wild-type plants, especially in the presence of nonoptimal low Ca2+ concentrations in the culture medium. Furthermore, root growth and root hair development were also stimulated in the antisense lines, in the presence of elevated external Ca2+ concentration or upon the addition of EGTA. In addition, seed germination and early seedling growth was stimulated in the antisense lines. These observations suggest a general and important role of AtIPK2α, and hence inositol polyphosphate metabolism, in the regulation of plant growth most likely through the regulation of calcium signaling, consistent with the well-known function of inositol trisphosphate in the mobilization of intracellular calcium stores.
Molecular Plant | 2009
Ya Niu; Guo-Zhang Wu; Rui Ye; Wen-Hui Lin; Qiu-Ming Shi; Liang-Jiao Xue; Xiao-Dong Xu; Yao Li; Yu-Guang Du; Hong-Wei Xue
In order to study Brassica napus fatty acid (FA) metabolism and relevant regulatory networks, a systematic identification of fatty acid (FA) biosynthesis-related genes was conducted. Following gene identification, gene expression profiles during B. napus seed development and FA metabolism were performed by cDNA chip hybridization (>8000 EST clones from seed). The results showed that FA biosynthesis and regulation, and carbon flux, were conserved between B. napus and Arabidopsis. However, a more critical role of starch metabolism was detected for B. napus seed FA metabolism and storage-component accumulation when compared with Arabidopsis. In addition, a crucial stage for the transition of seed-to-sink tissue was 17-21 d after flowering (DAF), whereas FA biosynthesis-related genes were highly expressed primarily at 21 DAF. Hormone (auxin and jasmonate) signaling is found to be important for FA metabolism. This study helps to reveal the global regulatory network of FA metabolism in developing B. napus seeds.
Cell Research | 2009
Yuan Wang; Wen-Hui Lin; Xu Chen; Hong-Wei Xue
Inositol polyphosphate 5-phosphatases (5PTases) are enzymes of phosphatidylinositol metabolism that affect various aspects of plant growth and development. Arabidopsis 5PTase13 regulates auxin homeostasis and hormone-related cotyledon vein development, and here we demonstrate that its knockout mutant 5pt13 has elevated sensitivity to gravistimulation in root gravitropic responses. The altered responses of 5pt13 mutants to 1-N-naphthylphthalamic acid (an auxin transport inhibitor) indicate that 5PTase13 might be involved in the regulation of auxin transport. Indeed, the auxin efflux carrier PIN2 is expressed more broadly under 5PTase13 deficiency, and observations of the internalization of the membrane-selective dye FM4-64 reveal altered vesicle trafficking in 5pt13 mutants. Compared with wild-type, 5pt13 mutant seedlings are less sensitive to the inhibition by brefeldin A of vesicle cycling, seedling growth, and the intracellular cycling of the PIN1 and PIN2 proteins. Further, auxin redistribution upon gravitropic stimulation is stimulated under 5PTase13 deficiency. These results suggest that 5PTase13 may modulate auxin transport by regulating vesicle trafficking and thereby play a role in root gravitropism.