Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wen-Liang Zhou is active.

Publication


Featured researches published by Wen-Liang Zhou.


The Journal of General Physiology | 2005

Cell-cell interaction underlies formation of fluid in the male reproductive tract of the rat.

King-Ho Cheung; George Pak-Heng Leung; Matthew C.T. Leung; Winnie W. C. Shum; Wen-Liang Zhou; P. Y. D. Wong

The epithelia lining the epididymides of many species consists of several cell types. We have provided evidence that the basal cells are essential to the integrated functions of the epithelium. Basal cells, but not principal cells, and other cells in the epididymis express TRPC3 and COX-1. We have isolated basal cells from intact rat epididymis using antibody-coated Dynabeads and subjected them to whole-cell patch-clamp measurement of nonselective cation channel activity, a feature of TRPC3 protein, and Fluo-3 fluorescence measurement of intracellular Ca2+ concentration. The results show that a nonselective cation current blockable by La3+ (0.1 mM), Gd3+ (0.1 mM), or SKF96365 (20 μM) could be activated by lysylbradykinin (200 nM). In cells loaded with Fluo-3, addition of lysylbradykinin (100 nM) caused a sustained increase of intracellular Ca2+. This effect was blocked by Gd3+ (0.1 mM) or SKF96365 (20 μM) and was not observed in Fluo-3–loaded principal cells. Stimulation of basal cell/principal cell cocultures with lysylbradykinin (200 nM) evoked in principal cells a current with CFTR-Cl− channel characteristics. Isolated principal cells in the absence of basal cells did not respond to lysylbradykinin but responded to PGE2 (100 nM) with activation of a CFTR-like current. Basal cells, but not principal cells, released prostaglandin E2 when stimulated with lysylbradykinin (100 nM). The release was blocked by SKF96365 (20 μM) and BAPTA-AM (0.05 or 0.1 mM). Confluent cell monolayers harvested from a mixture of disaggregated principal cells and basal cells responded to lysylbradykinin (100 nM) and PGE2 (500 nM) with an increase in electrogenic anion secretion. The former response was dependent on prostaglandin synthesis as piroxicam blocked the response. However, cell cultures obtained from principal cells alone responded to PGE2 but not to bradykinin. These results support the notion that basal cells regulate principal cells through a Ca2+ and COX signaling pathway.


PLOS ONE | 2012

Differences in iNOS and Arginase Expression and Activity in the Macrophages of Rats Are Responsible for the Resistance against T. gondii Infection

Zhi Li; Zhi-Jun Zhao; Xing-Quan Zhu; Qing-Shi Ren; Fang-Fang Nie; Jiang-Mei Gao; Xiao-Jie Gao; Ting-Bao Yang; Wen-Liang Zhou; Jilong Shen; Yong Wang; Fangli Lu; Xiao-Guang Chen; Geoff Hide; Francisco J. Ayala; Zhao-Rong Lun

Toxoplasma gondii infects humans and warm blooded animals causing devastating disease worldwide. It has long been a mystery as to why the peritoneal macrophages of rats are naturally resistant to T. gondii infection while those of mice are not. Here, we report that high expression levels and activity of inducible nitric oxide synthase (iNOS) and low levels of arginase-1 (Arg 1) activity in the peritoneal macrophages of rats are responsible for their resistance against T. gondii infection, due to high nitric oxide and low polyamines within these cells. The opposite situation was observed in the peritoneal macrophages of mice. This discovery of the opposing functions of iNOS and Arg 1 in rodent peritoneal macrophages may lead to a better understanding of the resistance mechanisms of mammals, particularly humans and livestock, against T. gondii and other intracellular pathogens.


PLOS ONE | 2008

Cellular Mechanisms Underlying the Laxative Effect of Flavonol Naringenin on Rat Constipation Model

Zi-Huan Yang; Haijie Yu; Ao Pan; Ye Chun Ruan; Wing-Hung Ko; Hsiao Chang Chan; Wen-Liang Zhou

Background & Aims Symptoms of constipation are extremely common, especially in the elderly. The present study aim to identify an efficacious treatment strategy for constipation by evaluating the secretion-promoting and laxative effect of a herbal compound, naringenin, on intestinal epithelial anion secretion and a rat constipation model, respectively. Methods/Principal Findings In isolated rat colonic crypts, mucosal addition of naringenin (100 µM) elicited a concentration-dependent and sustained increase in the short-circuit current (ISC), which could be inhibited in Cl− free solution or by bumetanide and DPC (diphenylamine-2-carboxylic acid), but not by DIDS (4, 4′- diisothiocyanatostilbene-2, 2′-disulfonic acid). Naringenin could increase intracellular cAMP content and PKA activity, consisted with that MDL-12330A (N-(Cis-2-phenyl-cyclopentyl) azacyclotridecan-2-imine-hydrochloride) pretreatment reduced the naringenin-induced ISC. In addition, significant inhibition of the naringenin-induced ISC by quinidine indicated that basolateral K+ channels were involved in maintaining this cAMP-dependent Cl− secretion. Naringenin-evoked whole cell current which exhibited a linear I–V relationship and time-and voltage- independent characteristics was inhibited by DPC, indicating that the cAMP activated Cl− conductance most likely CFTR (cystic fibrosis transmembrane conductance regulator) was involved. In rat constipation model, administration of naringenin restored the level of fecal output, water content and mucus secretion compared to loperamide-administrated group. Conclusions Taken together, our data suggest that naringenin could stimulate Cl− secretion in colonic epithelium via a signaling pathway involving cAMP and PKA, hence provide an osmotic force for subsequent colonic fluid secretion by which the laxative effect observed in the rat constipation model. Naringenin appears to be a novel alternative treatment strategy for constipation.


Physiology | 2011

Regulation of Smooth Muscle Contraction by the Epithelium: Role of Prostaglandins

Ye Chun Ruan; Wen-Liang Zhou; Hsiao Chang Chan

As an analog to the endothelium situated next to the vascular smooth muscle, the epithelium is emerging as an important regulator of smooth muscle contraction in many vital organs/tissues by interacting with other cell types and releasing epithelium-derived factors, among which prostaglandins have been demonstrated to play a versatile role in governing smooth muscle contraction essential to the physiological and pathophysiological processes in a wide range of organ systems.


Journal of Endocrinology | 2008

Two cytochrome P450 aromatase genes in the hermaphrodite ricefield eel Monopterus albus: mRNA expression during ovarian development and sex change

Yang Zhang; Weimin Zhang; Huiyi Yang; Wen-Liang Zhou; Chaoqun Hu; Lihong Zhang

Previously, the ricefield eel (Monopterus albus) was speculated to have only one cytochrome p450 aromatase gene. In this study, however, the cDNAs encoding two distinct cytochrome p450 aromatases, cyp19a1a and cyp19a1b, were isolated. The genomic organizations of both cyp19 genes were conserved when compared with other teleosts. Northern blot detected an abundant expression of cyp19a1a in the ovary, and cyp19a1b in the hypothalamus. RT-PCR coupled with Southern blot showed that cyp19a1a was expressed predominantly in the gonads of both sexes, with higher levels in the ovary than testis, while cyp19a1b was expressed in all the tissues examined in the male, but only in the brain and pituitary in the female. The levels of cyp19a1a mRNA in the ovary were increased significantly during vitellogenesis, but decreased significantly at mature stage. The levels of cyp19a1b mRNA in the brain and pituitary did not vary significantly during vitellogenesis. As ovarian development shifted from vitellogenesis to maturation, the levels of cyp19a1b mRNA was decreased significantly in the brain, but increased significantly in the pituitary. During natural sex change from female to male, the levels of cyp19a1a mRNA in the gonad were significantly decreased. The levels of cyp19a1b mRNA in the hypothalamus were significantly increased at the early intersexual phase, whereas the expression levels in the pituitary were significantly decreased at the intersexual phases. Taken together, these results showed a novel sexual dimorphism of cyp19a1b mRNA tissue distribution, and both CYP19 genes were associated with the ovarian development and natural sex change of the ricefield eel.


Toxicology | 2010

Mechanism underlying hypokalemia induced by trimethyltin chloride: Inhibition of H+/K+-ATPase in renal intercalated cells.

Xiaojiang Tang; Xiaojun Yang; Guanchao Lai; Jinhui Guo; Lihua Xia; Banghua Wu; Yuxuan Xie; Ming Huang; Jiabin Chen; Xiaolin Ruan; Gang Sui; Yichen Ge; Wulin Zuo; Na Zhao; Guanghua Zhu; Jinxin Zhang; Laiyu Li; Wen-Liang Zhou

Trimethyltin chloride (TMT), a byproduct of plastic stabilizers, has caused 67 poisoning accidents in the world; more than 98% (1814/1849) of the affected patients since 1998 have been in China. As a long-established toxic chemical, TMT severely affects the limbic system and the cerebellum; however, its relationship with hypokalemia, a condition observed in the majority of the cases in the last decade, remains elusive. To understand the mechanism underlying hypokalemia induced by TMT, Sprague-Dawley (SD) rats were administered TMT to determine the relationship between H(+)/K(+)-ATPase activity and the blood and urine K(+) concentration and pH, respectively. H(+)/K(+)-ATPase protein and mRNA were observed too. In vitro changes to intracellular pH, K(+) channels in renal cells were measured. The results showed that TMT increased potassium leakage from the kidney, raised urine pH, and inhibited H(+)/K(+)-ATPase activity both in vitro and in vivo. In the tested animals, H(+)/K(+)-ATPase activity was positively correlated with the decrease of plasma K(+) and blood pH but was negatively correlated with the increase of urine K(+) and urine pH (P<0.01), while TMT did not change the expression of H(+)/K(+)-ATPase protein and mRNA. TMT decreased intracellular pH and opened K(+) channels in renal intercalated cells. Our findings suggest TMT can directly inhibit the activity of H(+)/K(+)-ATPases in renal intercalated cells, reducing urine K(+) reabsorption and inducing hypokalemia.


PLOS ONE | 2013

An Integrative Proteomics and Interaction Network-Based Classifier for Prostate Cancer Diagnosis

Fu-Neng Jiang; Hui-chan He; Yanqiong Zhang; Deng-Liang Yang; Jiehong Huang; Yun-Xin Zhu; Ru-jun Mo; Guo-Chang Chen; Sheng-bang Yang; Yan-Ru Chen; Wei-De Zhong; Wen-Liang Zhou

Aim Early diagnosis of prostate cancer (PCa), which is a clinically heterogeneous-multifocal disease, is essential to improve the prognosis of patients. However, published PCa diagnostic markers share little overlap and are poorly validated using independent data. Therefore, we here developed an integrative proteomics and interaction network-based classifier by combining the differential protein expression with topological features of human protein interaction networks to enhance the ability of PCa diagnosis. Methods and Results By two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with MS using PCa and adjacent benign tissues of prostate, a total of 60 proteins with the differential expression in PCa tissues were identified as the candidate markers. Then, their networks were analyzed by GeneGO Meta-Core software and three hub proteins (PTEN, SFPQ and HDAC1) were chosen. After that, a PCa diagnostic classifier was constructed by support vector machine (SVM) modeling based on the microarray gene expression data of the genes which encode the hub proteins mentioned above. Validations of diagnostic performance showed that this classifier had high predictive accuracy (85.96∼90.18%) and area under ROC curve (approximating 1.0). Furthermore, the clinical significance of PTEN, SFPQ and HDAC1 proteins in PCa was validated by both ELISA and immunohistochemistry analyses. More interestingly, PTEN protein was identified as an independent prognostic marker for biochemical recurrence-free survival in PCa patients according to the multivariate analysis by Cox Regression. Conclusions Our data indicated that the integrative proteomics and interaction network-based classifier which combines the differential protein expression and topological features of human protein interaction network may be a powerful tool for the diagnosis of PCa. We also identified PTEN protein as a novel prognostic marker for biochemical recurrence-free survival in PCa patients.


Molecular and Biochemical Parasitology | 2015

Resistance to normal human serum reveals Trypanosoma lewisi as an underestimated human pathogen

Zhao-Rong Lun; Yan-Zi Wen; Pierrick Uzureau; Laurence Lecordier; De-Hua Lai; You-Gen Lan; Marc Desquesnes; Guo-Qing Geng; Ting-Bao Yang; Wen-Liang Zhou; Jean Jannin; Pear P. Simarro; Philippe Truc; Philippe Vincendeau; Etienne Pays

Human-infectious trypanosomes such as Trypanosoma cruzi, T. brucei rhodesiense, and T. b. gambiense can be discriminated from those only infecting animals by their resistance to normal human serum (NHS). These parasites are naturally resistant to trypanolysis induced by the human-specific pore-forming serum protein apolipoprotein L1 (ApoL-1). T. lewisi, a worldwide distributed parasite, has been considered as rat-specific and non-pathogenic to the natural hosts. Here we provide evidence that 19 tested T. lewisi isolates from Thailand and China share resistance to NHS. Further investigation on one selected isolate CPO02 showed that it could resist at least 90% NHS or 30 μg/ml recombinant human ApoL-1 (rhApoL-1) in vitro, in contrast to T. b. brucei which could not survive in 0.0001% NHS and 0.1 μg/ml rhApoL-1. In vivo tests in rats also demonstrated that this parasite is fully resistant to lysis by NHS. Together with recent reports of atypical human infection by T. lewisi, these data allow the conclusion that T. lewisi is potentially an underestimated and thus a neglected human pathogen.


European Journal of Pharmacology | 2014

Cellular mechanism underlying hydrogen sulfide induced mouse tracheal smooth muscle relaxation: Role of BKCa

Jiehong Huang; Yu-Li Luo; Yuan Hao; Yi-Lin Zhang; Peng-Xiao Chen; Jia-Wen Xu; Min-hui Chen; Yong-feng Luo; Nanshan Zhong; Jun Xu; Wen-Liang Zhou

Recent studies have suggested that hydrogen sulfide (H2S), an important endogenous signaling gaseous molecule, participates in relaxation of smooth muscle. Nevertheless, the mechanism of this relaxation effect on respiratory system is still unclear. The present study aims to investigate the physiological function as well as cellular mechanism of H2S in tracheal smooth muscle. Application of the H2S donor, sodium hydrosulphide (NaHS) and the precursor of H2S, l-cysteine (l-Cys) induced mouse tracheal smooth muscle (TSM) relaxation in an epithelium-independent manner. The relaxation of TSM induced by NaHS was abrogated by iberiotoxin (IbTX), the large conductance calcium activated potassium channel (BKCa) blocker. In primary cultured mouse TSM cells, NaHS remarkably increased potassium outward currents in whole-cell patch clamp, hyperpolarized TSM cells and inhibited the calcium influx. All of these effects were significantly blocked by IbTX. Consistent with the results in vitro, administration of NaHS in vivo also reduced airway hyperresponsiveness in Ovalbumin (OVA)-challenged asthmatic mice. Our present study indicates that NaHS can induce mouse TSM relaxation by activating BKCa. These observations reveal the physiological function of H2S in airway, which provides a promising pharmacological target for the treatment of asthma and other respiratory diseases associated with over-contraction of TSM.


PLOS ONE | 2011

Sodium Coupled Bicarbonate Influx Regulates Intracellular and Apical pH in Cultured Rat Caput Epididymal Epithelium

Wulin Zuo; Sheng Li; Jiehong Huang; Deng-Liang Yang; Geng Zhang; Siliang Chen; Ye Chun Ruan; Ke-Nan Ye; Christopher H.K. Cheng; Wen-Liang Zhou

Background The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na+/HCO3 − cotransporter in the pH regulation in rat epididymis. Method/Principal Findings Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F) and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit(KH) solution, the intracellular pH (pHi) recovery from NH4Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na+/H+ exchanger (NHE). Immediately changing of the KH solution from HEPES buffered to HCO3 − buffered would cause another pHi recovery. The pHi recovery in HCO3 − buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2, 2-disulfonic acid (DIDS), the inhibitor of HCO3 − transporter or by removal of extracellular Na+. The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH. Conclusions The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium.

Collaboration


Dive into the Wen-Liang Zhou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wulin Zuo

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Ye Chun Ruan

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ao Pan

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Haijie Yu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geng Zhang

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge