Wen-ling Huang
University of Hamburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wen-ling Huang.
Canadian Journal of Mathematics | 2008
Wen-ling Huang; Peter Šemrl
Huas fundamental theorem of the geometry of hermitian matrices characterizes bijective mapsonthespaceofall n×nhermitianmatricespreservingadjacencyinbothdirections. Theproblem of possible improvements has been open for a while. There are three natural problems here. Do we need the bijectivity assumption? Can we replace the assumption of preserving adjacency in both directions by the weaker assumption of preserving adjacency in one direction only? Can we obtain such a characterization for maps acting between the spaces of hermitian matrices of different sizes? We answer all three questions for the complex hermitian matrices, thus obtaining the optimal structural result for adjacency preserving maps on hermitian matrices over the complex field.
Proceedings of the American Mathematical Society | 2000
Wen-ling Huang
In the space Ir of invariant r-dimensional subspaces of a null system in (2r + l)-dimensional projective space, W.L. Chow characterized the basic group of transformations as all the bijections : I, -+ Ir, for which both W and -1 preserve adjacency. In the present paper we show that the two conditions p: I, -+ I, is a surjection and W preserves adjacency are sufficient to characterize the basic group. At the end of this paper we give an application to Lie geometry.
Results in Mathematics | 2001
Wen-ling Huang
In the space Ir of the invariant r-dimensional subspaces of a null system in (2r +1)-dimensional projective space, W.L. Chow characterized the basic group of transformations of Ir as all the transformations φ: Ir → Ir which are bijective and such that φ and φ−1 preserve adjacency. In the present paper we examine arbitrary mappings φ of Ir which satisfy the two conditions: 1. φ preserves adjacency. 2. For any a ∈ Ir there exists b ∈ Ir such that aφ ∩ bφ = ø.
Geometriae Dedicata | 1999
Wen-ling Huang
In the present paper the relation between the fundamental theorem of Sn(F) and the fundamental theorem ofP Sn(F)is studied geometrically.
Rendiconti Lincei-matematica E Applicazioni | 2006
Wen-ling Huang; Shing Tung Yau; Xiao Zhang
We find two conditions related to the {\it news functions} of the Bondis radiating vacuum spacetimes. We provide a complete proof of the positivity of the Bondi mass by using Schoen-Yaus method under one condition and by using Wittens method under another condition.
Aequationes Mathematicae | 1996
Wen-ling Huang
Zusammenfassung und VorwortZu jeder Geometrie, in der Geraden definiert sind, gehört eine Geradengeometrie, in der interessante Fragestellungen auftauchen. Die klassische Frage in der Liniengeometrie Plückers lautet: “Gegeben sei ein dreidimensionaler projektiver Raum. Wie lauten diejenigen bijektiven Geradenabbildungen, für die sich zwei Geraden genau dann schneiden, wenn sich deren Bilder schneiden?” Eine solche Abbildung ist entweder induziert durch eine Kollineation des projektiven Raumes oder eine Dualität. W. L. Chow und H. Brauner haben in [5] und [4] diese Fragestellung verallgemeinert. W. Benz hat in [1] die klassische Frage Plückers im ℝn fürn ≥ 3 beantwortet. J. Lester sucht in [6] diejenigen Geradenabbildungen des dreidimensionalen euklidischen Raumes, die den Abstand 1 von Geraden in beiden Richtungen erhalten.In meiner Arbeit bestimme ich diejenigen Geradenabbildungenπ desn-dimensionalen reellen euklidischen Raumes, die den Inhalt 1 von Dreiecken unverändert lassen (n ≥ 2). Dieser Frage hat sich auch schon Frau Lester gewidmet ([8]), aber unter der zusätzlichen, starken Voraussetzung, daßπ bijektiv sein soll. Ich werde zeigen, daß diese Forderung unnötig ist; der Nachweis der Surjektivität beinhaltet die eigentliche Schwierigkeit.
Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg | 1998
Wen-ling Huang
Aequationes Mathematicae | 2004
Wen-ling Huang; Roland Höfer; Zhe-Xian Wan
Archive | 2004
Wen-ling Huang; Zhe-Xian Wan
Linear Algebra and its Applications | 2008
Wen-ling Huang; Hans Havlicek