Wen-Te Chang
China Medical University (PRC)
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wen-Te Chang.
Journal of Virological Methods | 2011
Meng-Shiou Lee; Meng-Ja Yang; You-Cheng Hseu; Guan-Hua Lai; Wen-Te Chang; Yau-Heiu Hsu; Ming-Kuem Lin
Cymbidium mosaic virus (CymMV) is the most prevalent orchid virus. A single-tube one-step betaine-free reverse transcription (RT) loop-mediated isothermal amplification (LAMP) assay was developed for the rapid and easy detection of orchid-infecting CymMV. Five sets of primers were designed based on the conserved regions among various virus isolates. The specificity and the sensitivity of the assay were then evaluated using the RT-LAMP reaction. Within 1h under isothermal conditions at 60°C the target viral gene was amplified successfully. This RT-LAMP assay was found to be quick, specific, sensitive and easy to perform assay that involved only one step and was simpler to carry out than alternative approaches. Thus this assay is an alternative for the rapid and easy detection of CymMV in orchids. This is first time that a RT-LAMP method for the detection of an orchid virus has been described.
Journal of Applied Microbiology | 2010
Chi-Hung Huang; Guan-Hua Lai; M.-S. Lee; Wen-Hsin Lin; Yi-Yang Lien; S.-C. Hsueh; Jung-Yie Kao; Wen-Te Chang; Tsung-Chi Lu; W.-N. Lin; H.-J. Chen
Aim: Chicken anaemia virus (CAV) causes an economically important viral disease in chickens worldwide. The main aim of this study was to establish a rapid, sensitive and specific loop‐mediated isothermal amplification (LAMP) assay for detecting CAV infection.
The American Journal of Chinese Medicine | 2010
Wen-Neng Lin; Hsiu-Ying Lu; Meng-Shiou Lee; Shih-Ying Yang; Hsi-Jien Chen; Yuan-Shiun Chang; Wen-Te Chang
The perfect ginseng radix is collected when the ginseng root reaches a cultivation age of six years; this ensures the best mass quality and consistency of the plants essential bioactive components. Since traditional means of authentication via physical appearance or smell are hardly reliable, an efficient analytical method that can determine the real cultivation age of dried ginseng radix in commercial products, especially ginseng products of various dosage forms, is urgently required. In the present study, chemical fingerprint by (1)H-NMR spectroscopy was used on dried ginseng radix samples with cultivation ages ranging from 1-6 years. The resulting dataset was then analyzed by using principle component analysis and cluster analysis to build up a distributive model that allows the identification of the real cultivation age of the ginseng radix based on a plant metabolomic strategy. This quality surveillance method was able to clearly discriminate the 6 years old ginseng radix from the other ages, and could be applied on the evaluation of the real cultivation age for the various dried white ginseng radix samples and commercial products accurately.
The American Journal of Chinese Medicine | 2014
Jung-Chun Liao; Wen-Te Chang; Meng-Shiou Lee; Yung-Jia Chiu; Wei-Kai Chao; Ying-Chih Lin; Ming-Kuem Lin; Wen-Huang Peng
The seeds of Cuscuta chinensis, Cuscutae Semen, are commonly used as a medicinal material for treating the aching and weakness of the loins and knees, tonifying the defects of the liver and the kidney, and treating the diarrhea due to hypofunction of the kidney and the spleen. Since aching and inflammation are highly correlated with such diseases, the aim of this study is to investigate the possible antinociceptive and anti-inflammatory mechanisms of the seeds of C. chinensis. The antinociceptive effect of the seeds of C. chinensis was evaluated via the acetic acid-induced writhing response and formalin-induced paw licking methods. The anti-inflammatory effect was evaluated via the λ-carrageenan induced mouse paw edema method. The results found that 100 and 500 mg/kg of the methanol extract of the seeds of C. chinensis( CC MeOH ) significantly decreased (p < 0.01 and p < 0.001, respectively) the writhing response in the acetic acid assay. Additionally, 20-500 mg/kg of CC MeOH significantly decreased licking time at the early (20 and 100 mg/kg, p < 0.001) and late phases (100 mg/kg, p < 0.01; 500 mg/kg, p < 0.001) of the formalin test, respectively. Furthermore, CC MeOH (100 and 500 mg/kg) significantly decreased (p < 0.01 and p < 0.001, respectively) edema paw volume four hours after λ-carrageenan had been injected. The results in the following study also revealed that the anti-inflammatory mechanism of CC MeOH may be due to declined levels of NO and MDA in the edema paw by increasing the activities of SOD, GPx and GRd in the liver. In addition, CC MeOH also decreased IL-1β, IL-6, NF-κB, TNF-α, and COX-2 levels. This is the first study to demonstrate the possible mechanisms for the antinociceptive and anti-inflammatory effects of CC MeOH in vivo. Thus, it provides evidence for the treatment of Cuscutae Semen in inflammatory diseases.
Microbial Cell Factories | 2011
Meng-Shiou Lee; You-Cheng Hseu; Guan-Hua Lai; Wen-Te Chang; Hsi-Jien Chen; Chi-Hung Huang; Meng-Shiunn Lee; Min-Ying Wang; Jung-Yie Kao; Bang-Jau You; Wen-Hsin Lin; Yi-Yang Lien; Ming-Kuem Lin
BackgroundChicken anemia virus (CAV), the causative agent chicken anemia, is the only member of the genus Gyrovirus of the Circoviridae family. CAV is an immune suppressive virus and causes anemia, lymph organ atrophy and immunodeficiency. The production and biochemical characterization of VP1 protein and its use in a subunit vaccine or as part of a diagnostic kit would be useful to CAV infection prevention.ResultsSignificantly increased expression of the recombinant full-length VP1 capsid protein from chicken anemia virus was demonstrated using an E. coli expression system. The VP1 gene was cloned into various different expression vectors and then these were expressed in a number of different E. coli strains. The expression of CAV VP1 in E. coli was significantly increased when VP1 was fused with GST protein rather than a His-tag. By optimizing the various rare amino acid codons within the N-terminus of the VP1 protein, the expression level of the VP1 protein in E. coli BL21(DE3)-pLysS was further increased significantly. The highest protein expression level obtained was 17.5 g/L per liter of bacterial culture after induction with 0.1 mM IPTG for 2 h. After purification by GST affinity chromatography, the purified full-length VP1 protein produced in this way was demonstrated to have good antigenicity and was able to be recognized by CAV-positive chicken serum in an ELISA assay.ConclusionsPurified recombinant VP1 protein with the genes codons optimized in the N-terminal region has potential as chimeric protein that, when expressed in E. coli, may be useful in the future for the development of subunit vaccines and diagnostic tests.
Evidence-based Complementary and Alternative Medicine | 2012
Ching-Wen Chang; Wen-Te Chang; Jung-Chun Liao; Yung-Jia Chiu; Ming-Tsuen Hsieh; Wen-Huang Peng; Yu-Chin Lin
The aim of this study was to investigate possible analgesic and anti-inflammatory mechanisms of the CRMeOH. Analgesic effect was evaluated in two models including acetic acid-induced writhing response and formalin-induced paw licking. The anti-inflammatory effect was evaluated by λ-carrageenan-induced mouse paw edema and histopathologic analyses. The results showed that CRMeOH (500 mg/kg) decreased writhing response in the acetic acid assay and licking time in the formalin test. CRMeOH (100 and 500 mg/kg) significantly decreased edema paw volume at 4th to 5th hours after λ-carrageenan had been injected. Histopathologically, CRMeOH abated the level of tissue destruction and swelling of the edema paws. These results were indicated that anti-inflammatory mechanism of CRMeOH may be due to declined levels of NO and MDA in the edema paw through increasing the activities of SOD, GPx, and GRd in the liver. Additionally, CRMeOH also decreased IL-1β, IL-6, NFκB, TNF-α, COX-2, and iNOS levels. The contents of two active ingredients, ursolic acid and lupeol, were quantitatively determined. This paper demonstrated possible mechanisms for the analgesic and anti-inflammatory effects of CRMeOH and provided evidence for the classical treatment of Cissus repens in inflammatory diseases.
International Journal of Molecular Sciences | 2015
Guan-Hua Lai; Jung Chao; Ming-Kuem Lin; Wen-Te Chang; Wen-Huang Peng; Fang-Chun Sun; Meng-Shiunn Lee; Meng-Shiou Lee
Taraxacum formosanum (TF) is a medicinal plant used as an important component of health drinks in Taiwan. In this study, a rapid, sensitive and specific loop-mediated isothermal amplification (LAMP) assay for authenticating TF was established. A set of four specific LAMP primers was designed based on the nucleotide sequence of the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA (nrDNA) of TF. LAMP amplicons were successfully amplified and detected when purified genomic DNA of TF was added in the LAMP reaction under isothermal condition (65 °C) within 45 min. These specific LAMP primers have high specificity and can accurately discriminate Taraxacum formosanum from other adulterant plants; 1 pg of genomic DNA was determined to be the detection limit of the LAMP assay. In conclusion, using this novel approach, TF and its misused plant samples obtained from herbal tea markets were easily identified and discriminated by LAMP assay for quality control.
Transboundary and Emerging Diseases | 2011
Meng-Shiou Lee; Yu-Mei Chou; Yi-Yang Lien; Ming-Kuem Lin; Wen-Te Chang; Hong-Zin Lee; Guan-Hua Lai; Hsi-Jien Chen; C.-H. Huang; Wen-Hsin Lin
The aim of this study was to evaluate the production of chicken anaemia virus VP3 protein in different Escherichia coli strains and to address the diagnostic application of purified E. coli-expressed VP3 protein for the detection of chicken anaemia virus (CAV) infection and the development of an ELISA kit. Three E. coli strains, BL21, BL21 codonplus RP and BL21 pLysS, each harbouring a VP3 protein expressing plasmid, were investigated after induction to produce recombinant VP3 protein. After isopropyl-β-D-thiogalactoside (IPTG) induction, VP3 protein was successfully expressed in all three E. coli strains. The BL21 pLysS strain gave the best performance in terms of protein productivity and growth profile. In addition, the optimal culture temperature and IPTG concentration were found to be 0.25 mM and 20 °C, respectively. Using Ni-NTA-purified VP3 protein as an ELISA coating antigen, the purified VP3 was shown to be highly antigenic and able to discriminate sera from chickens infected with CAV from those that were uninfected during an evaluation of CAV infection serodiagnosis. A VP3-based ELISA demonstrated 100% (6/6 x 100%) specificity and sensitivities of 91.3% (21/23 x 100%) and 82.6% (19/23 x 100%) using cut-off values of the mean plus 2 SD and the mean plus 3 SD, respectively.
International Journal of Molecular Sciences | 2016
Hsin-Chun Chen; Wen-Te Chang; You-Cheng Hseu; Hsing-Yu Chen; Cheng Hsuan Chuang; Chi-Chen Lin; Meng-Shiou Lee; Ming-Kuem Lin
Litsea cubeba L., also named as Makauy, is a traditional herb and has been used as cooking condiment or tea brewing to treat diseases for aborigines. The present study was undertaken to explore the chemical compositions of the fruit essential oil of L. cubeba (LCEO) and the immunomodulatory effect of LCEO on dendritic cells and mice. The LCEO was analyzed using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) with direct injection (DI/GC) or headspace-solid phase microextraction (HS-SPME/GC). In total, 56 components were identified, of which 48 were detected by DI/GC and 49 were detected by HS-SPME/GC. The principal compounds were citral (neral and geranial). An immunosuppressive activity of LCEO was investigated with bone marrow-derived dendritic cells (DCs) which have a critical role to trigger the adaptive immunity. Additionally, the inhibitory effect of LCEO on immune response was elucidated by performing the contact hypersensitivity (CHS) responses in mice. Our results clearly showed that LCEO decreases the production of TNF-α and cytokine IL-12 in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated DCs. CHS response and the infiltrative T cells were inhibited in the tested ears of the mice co-treated with LCEO. We demonstrate, for the first time, that the LCEO mainly containing citral exhibits an immunosuppressive effect on DCs and mice, indicating that LCEO can potentially be applied in the treatment of CHS, inflammatory diseases, and autoimmune diseases.
Journal of Photochemistry and Photobiology B-biology | 2018
Ing-Gin J. Chen; Meng-Shiou Lee; Ming-Kuem Lin; Chia-Yun Ko; Wen-Te Chang
The effect of light-emitting diodes (LEDs) on the production of secondary metabolites in medicinal plants and hairy roots is receiving much attention. The roots and rhizomes of the traditional Chinese medicinal plant Salvia miltiorrhiza Bunge are widely used for treating cardiovascular and cerebrovascular diseases. The main components are liposoluble tanshinones and hydrophilic phenolic acids. Moreover, hairy root culture of S. miltiorrhiza has been used in research of valuable plant-derived secondary metabolites. In this study, we examined the effect of LEDs with different combinations of wavelengths on the content of the main components in hairy roots of S. miltiorrhiza. Tanshinone IIA (TSIIA) content in hairy roots was significantly decreased with all light treatments containing blue light by >60% and was 9 times lower with LED treatment duration changed from 1 week to 3 weeks. HMGR, DXS2, DXR, GGPPS, CPS and CYP76AH1 genes involved in the tanshinone biosynthesis pathway were downregulated by blue light. Furthermore, light quality treatments have different effect on the accumulation of phenolic acids in hairy roots of S. miltiorrhiza. The light treatments 6R3B, 6B3IR, 7RGB and 2R6BUV for 3 weeks could increase rosmarinic acid (RA) content slightly but not salvianolic acid B (SAB) content. Different secondary metabolite contents could be regulated by different wavelength combinations of LEDs. Blue light could reduce TSIIA content in hairy roots of S. miltiorrhiza via gene regulation.