Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wen-Ting Liao is active.

Publication


Featured researches published by Wen-Ting Liao.


Oncotarget | 2016

Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer.

Huijun Xie; Xiaoli Ren; Sainan Xin; Xiaoliang Lan; Guifeng Lu; Yuan Lin; Shaoshan Yang; Zhicheng Zeng; Wen-Ting Liao; Yanqing Ding; Li Liang

Circular RNAs (circRNAs), a large class of RNAs, have recently shown huge capabilities as gene regulators in mammals. Some of them bind with microRNAs (miRNAs) and act as natural miRNA sponges to inhibit related miRNAs’ activities. Here we showed that hsa_circ_001569 acted as a positive regulator in cell proliferation and invasion of colorectal cancer (CRC). Moreover, hsa_circ_001569 was identified as a sponge of miR-145 and up-regulated miR-145 functional targets E2F5, BAG4 and FMNL2. In CRC tissues, circ_001569 negatively correlated with miR-145, and miR-145 correlated negatively with E2F5, BAG4 and FMNL2 expressions. Our study reveals a novel regulatory mechanism of circ_001569 in cell proliferation and invasion in CRC, provides a comprehensive landscape of circ_001569 that will facilitate further biomarker discoveries in the progression of CRC.


Clinical Cancer Research | 2011

HOXB7 as a Prognostic Factor and Mediator of Colorectal Cancer Progression

Wen-Ting Liao; Dan Jiang; Jian Yuan; Yan-Mei Cui; Xi-Wen Shi; Cui-Min Chen; Xiu-wu Bian; Yongjian Deng; Yanqing Ding

Purpose: This study was to investigate the clinicopathologic significance and potential role of HOXB7 in the development and progression of colorectal cancer (CRC). Experimental Design: The relationship between HOXB7 expression and clinical characteristics of CRC was analyzed in 224 paraffin-embedded archived CRC specimens by immunohistochemistry (IHC). The effects of HOXB7 on cell growth and proliferation, as well as on tumorigenesis, were examined both in vitro and in vivo, using MTT assay, colony formation assay, cell cycle analysis, soft agar assay, and tumorigenesis in nude mice. Western blotting and real-time reverse transcriptase-PCR were performed to examine the impact of HOXB7 on the PI3K/Akt and MAPK signaling pathways. Results: HOXB7 protein level was significantly correlated with advanced Dukes stage (P < 0.001), T stage (P = 0.012), distant metastasis (P = 0.042), higher proliferation index (P = 0.007) and poor survival of patients (P = 0.005). Enforced expression of HOXB7 in CRC cell lines significantly enhanced cell growth, proliferation and tumorigenesis. Conversely, knockdown of HOXB7 caused an inhibition of cell growth, proliferation, and tumorigenesis. We also showed that HOXB7 accelerated G0–G1 to S-phase transition concomitantly with upregulation of cyclin D1 and downregulation of p27Kip1. On the contrary, knockdown of HOXB7 caused G1–S-phase arrest, downregulation of cyclin D1 and upregulation of p27Kip1. Enforced expression of HOXB7 could enhance PI3K/AKT and MAPK pathway activity. Conclusion: Our findings suggest that HOXB7 protein, as a valuable marker of CRC prognosis, plays an important role in the development and progression of human CRC. Clin Cancer Res; 17(11); 3569–78. ©2011 AACR.


The Journal of Pathology | 2014

MicroRNA-30b functions as a tumour suppressor in human colorectal cancer by targeting KRAS, PIK3CD and BCL2

Wen-Ting Liao; Ya-Ping Ye; Nian-Jie Zhang; Tingting Li; Shu-Yang Wang; Yan-Mei Cui; Lu Qi; Ping Wu; Hong-Li Jiao; Yi-Jun Xie; Chi Zhang; Jun-Xian Wang; Yanqing Ding

Colorectal cancer (CRC) is the third most common cancer in the USA. MicroRNAs play important roles in the pathogenesis of CRC. In this study, we investigated the role of miR‐30b in CRC and found that its expression was significantly lower in CRC tissues than that in normal tissues. We showed that a low expression level of miR‐30b was closely related to poor differentiation, advanced TNM stage and poor prognosis of CRC. Further experiments showed that over‐expression of miR‐30b suppressed CRC cell proliferation in vitro and tumour growth in vivo. Specifically, miR‐30b promoted G1 arrest and induced apoptosis. Moreover, KRAS, PIK3CD and BCL2 were identified as direct and functional targets of miR‐30b. MiR‐30b directly targeted the 3′‐untranslated regions of their mRNAs and repressed their expression. This study revealed functional and mechanistic links between miRNA‐30b and oncogene KRAS, PIK3CD and BCL2 in the pathogenesis of CRC. MiR‐30b not only plays important roles in the regulation of cell proliferation and tumour growth in CRC, but is also a potential prognostic marker or therapeutic target for CRC. Restoration of miR‐30b expression may represent a promising therapeutic approach for targeting malignant CRC. Copyright


Clinical Cancer Research | 2013

microRNA-224 Promotes Cell Proliferation and Tumor Growth in Human Colorectal Cancer by Repressing PHLPP1 and PHLPP2

Wen-Ting Liao; Tingting Li; Zheng-Gen Wang; Shu-Yang Wang; Mei-Rong He; Ya-Ping Ye; Lu Qi; Yan-Mei Cui; Ping Wu; Hong-Li Jiao; Chi Zhang; Yi-Jun Xie; Jun-Xian Wang; Yanqing Ding

Purpose: To investigate the clinicopathologic significance, role, and mechanism of action of microRNA-224 (miR-224) in colorectal cancer. Experimental Design: Real-time PCR was used to quantify miR-224 expression. The association of miR-224 with the clinicopathologic features and survival was evaluated in 110 colorectal cancer patients. The role of miR-224 in colorectal cancer was investigated using in vitro and in vivo assays. Luciferase reporter assays were conducted to confirm target gene associations. Results: miR-224 was overexpressed in colorectal cancer. High-level expression of miR-224 was significantly associated with an aggressive phenotype and poor prognosis. Overexpression of miR-224 promoted colorectal cancer cell proliferation in vitro and tumor growth in vivo. Specifically, miR-224 accelerated the G1–S phase transition through activation of AKT/FOXO3a signaling, downregulation of p21Cip1 and p27Kip1, and upregulation of cyclin D1. Moreover, both PH domain leucine-rich-repeats protein phosphatase 1 (PHLPP1) and PHLPP2, antagonists of PI3K/AKT signaling, were confirmed as bona fide targets of miR-224. miR-224 directly targeted the 3′-untranslated regions of the PHLPP1 and PHLPP2 mRNAs and repressed their expression. Conclusion: This study reveals functional and mechanistic links between miRNA-224 and the tumor suppressors PHLPP1 and PHLPP2 in the pathogenesis of colorectal cancer. miR-224 not only plays important roles in the regulation of cell proliferation and tumor growth in colorectal cancer, but also has potential as a prognostic marker or therapeutic target for colorectal cancer. Clin Cancer Res; 19(17); 4662–72. ©2013 AACR.


Cancer Letters | 2014

FOXC2 promotes colorectal cancer proliferation through inhibition of FOXO3a and activation of MAPK and AKT signaling pathways.

Yan-Mei Cui; Dan Jiang; Shi-Hong Zhang; Ping Wu; Ya-Ping Ye; Cui-Min Chen; Na Tang; Li Liang; Tingting Li; Lu Qi; Shu-Yang Wang; Hong-Li Jiao; Jie Lin; Yanqing Ding; Wen-Ting Liao

Abnormal expression of FOXC2 has been found in several human cancers. However, the role of FOXC2 in the progression of colorectal cancer (CRC) has not been well characterized. In analysis of 206 CRC specimens, we revealed that both high expression and nuclear localization of FOXC2 were correlated to aggressive characteristics and poor survival of patients with CRC. FOXC2 promoted cell proliferation through activation of MAPK and AKT pathways, subsequently down-regulating p27, up-regulating cyclin D1 and p-FOXO3a. Furthermore, FOXC2 nuclear localization was required for its promotion of cell proliferation. These findings suggest that FOXC2 plays an essential role in CRC progression and may serve as a valuable clinical prognostic marker of this disease.


The Journal of Pathology | 2016

TUSC3 promotes colorectal cancer progression and epithelial-mesenchymal transition (EMT) through WNT/β-catenin and MAPK signalling.

Ye Gu; Qian Wang; Kang Guo; Weizhao Qin; Wen-Ting Liao; Shuang Wang; Yanqing Ding; Jie Lin

Colorectal cancer (CRC) is one of the most common malignancies and is the second leading cause of cancer death in humans. Tumour suppressor candidate 3 (TUSC3) plays an important role in embryogenesis and metabolism. Deletion of TUSC3 often causes non‐syndromic mental retardation. Even though TUSC3 deregulation is frequently observed in epithelial cancers, the function of TUSC3 in CRC has remained unknown. In this study, we observed greater expression of TUSC3 at the mRNA and protein level in clinical colorectal tumour samples compared with paired normal tissues. Gain‐ and loss‐of‐function analyses were performed to evaluate the functional significance of TUSC3 in CRC initiation and progression. Immunoblotting, immunofluorescence, and co‐immunoprecipitation analyses were used to identify potential pathways with which TUSC3 might be involved. Overexpression of TUSC3 in CRC cells induced epithelial–mesenchymal transition (EMT) in CRC cells, accompanied by down‐regulation of the epithelial marker, E‐cadherin, and up‐regulation of the mesenchymal marker, vimentin. Increased proliferation, migration, and invasion, as well as accelerated xenograft tumour growth, were observed in TUSC3‐overexpressing CRC cells, while opposite effects were achieved in TUSC3‐silenced cells. In conclusion, our study demonstrated the oncogenic role of TUSC3 in CRC and showed that TUSC3 may be responsible for alternations in the proliferation ability, aggressiveness, and invasive/metastatic potential of CRC through regulating the MAPK, PI3K/Akt, and Wnt/β‐catenin signalling pathways. Copyright


Journal of Experimental & Clinical Cancer Research | 2016

MicroRNA-224 sustains Wnt/β-catenin signaling and promotes aggressive phenotype of colorectal cancer

Tingting Li; Qiuhua Lai; Shu-Yang Wang; Juan-Juan Cai; Zhi-Yuan Xiao; Danling Deng; Liu-Qing He; Hong-Li Jiao; Ya-Ping Ye; Li Liang; Yanqing Ding; Wen-Ting Liao

BackgroundGrowing evidence suggests that Wnt/β-catenin pathway plays an important role in CRC development, progression and metastasis. Aberrant miR-224 expression has been reported in CRC. However, the mechanism of miR-224 promotes both proliferation and metastatic ability largely remains unclear.MethodsReal-time PCR was used to quantify miR-224 expression. Luciferase reporter assays were conducted to confirm the activity of Wnt/β-catenin pathway and target gene associations, and immunofluorescence staining assay was performed to observe the nuclear translocation of β-catenin. Bioinformatics analysis combined with in vivo and vitro functional assays showed the potential target genes, GSK3β and SFRP2, of miR-224. Specimens from forty patients with CRC were analyzed for the expression of miR-224 and the relationship with GSK3β/SFRP2 by real-time PCR and western blot.ResultsBioinformatics and cell luciferase function studies verified the direct regulation of miR-224 on the 3’-UTR of the GSK3β and SFRP2 genes, which leads to the activation of Wnt/β-catenin signaling and the nuclear translocation of β-catenin. In addition, knockdown of miR-224 significantly recovered the expression of GSK3β and SFRP2 and attenuated Wnt/β-catenin-mediated cell metastasis and proliferation. The ectopic upregulation of miR-224 dramatically inhibited the expression of GSK3β/SFRP2 and enhanced CRC proliferation and invasion.ConclusionOur research showed mechanistic links between miR-224 and Wnt/β-catenin in the pathogenesis of CRC through modulation of GSK3β and SFRP2.


Journal of Cancer Research and Clinical Oncology | 2016

MicroRNA-206 functions as a tumor suppressor in colorectal cancer by targeting FMNL2

Xiaoli Ren; G. Y. He; Xianzheng Li; Hui Men; L. Z. Yi; G. F. Lu; S. N. Xin; Pingxiang Wu; Yuling Li; Wen-Ting Liao; Ding Yq; Li Liang

AbstractBackground Colorectal cancer (CRC) is one of the most common cancers in the world. MicroRNAs play important roles in the progression of CRC. This study aimed to investigate the role of miR-206 and its novel mechanism in the invasion and metastasis of CRC.MethodologyReal-time RT-PCR or Western blotting was used to detect the expressions of miR-206, FMNL2 and c-MET in CRC cell lines and tissues. Luciferase reporter assays were conducted to detect the associations between miR-206 and 3′UTRs of FMNL2 and c-MET. A series of loss-of-function and gain-of-function assays were performed to evaluate the effect of miR-206 on the proliferation, invasion and metastasis of CRC cells.Results miR-206 was significantly down-regulated in CRC tissues and correlated closely with differentiation, lymphatic metastasis and serosal invasion. miR-206 suppressed CRC cell proliferation by arresting CRC cells in the G1/G0 phase and accelerating apoptosis. miR-206 also inhibited cell invasion and lung metastasis in CRC cells. Mechanically, FMNL2 and c-MET were identified as direct targets of miR-206. And FMNL2 rescued the suppression of miR-206 in the proliferation and invasion of CRC cells.ConclusionsThis study revealed functional and mechanistic links between miR-206 and oncogene FMNL2 and c-MET in the progression of CRC. miR-206 functioned as a tumor suppressor in the progression of CRC by targeting FMNL2 and c-MET. Restoration of miR-206 expression may represent a promising therapeutic approach for targeting malignant CRC.


PLOS ONE | 2013

Tiam1 transgenic mice display increased tumor invasive and metastatic potential of colorectal cancer after 1,2-dimethylhydrazine treatment.

Lina Yu; Q Zhang; Xin Li; Xing Hua; Yan-Mei Cui; Nian-Jie Zhang; Wen-Ting Liao; Yanqing Ding

Background T lymphoma invasion and metastasis 1 (Tiam1) is a potential modifier of tumor development and progression. Our previous study in vitro and in nude mice suggested a promotion role of Tiam1 on invasion and metastasis of colorectal cancer (CRC). In the present study, we generated Tiam1/C1199-CopGFP transgenic mice to investigate the tumorigenetic, invasive and metastatic alterations in the colon and rectum of wild-type and Tiam1 transgenic mice under 1,2-dimethylhydrazine (DMH) treatment. Methods Transgenic mice were produced by the method of pronuclear microinlectlon. Whole-body fluorescence imaging (Lighttools, Edmonton, Alberta, Canada), PCR, and immunohistochemical techniques (IHC) were applied sequentially to identify the transgenic mice. The carcinogen DMH (20 mg/kg) was used to induce colorectal tumors though intraperitoneal (i.p.) injections once a week for 24 weeks from the age of 4 weeks on Tiam1 transgenic or non-transgenic mice. Results We successfully generated Tiam1/C1199-CopGFP transgenic mice and induced primary tumors in the intestine of both wild type and Tiam1 transgenic mice by DMH treatment. In addition, Tiam1 transgenic mice developed larger and more aggressive neoplasm than wild-type mice. Moreover, immunohistochemical staining revealed that upregulation of Tiam1 was correlated with increased expression of β-Catenin and Vimentin, and downregulation of E-Cadherin in these mice. Conclusions Our study has provided in vivo evidence supporting that Tiam1 promotes invasion and metastasis of CRC, most probably through activation of Wnt/β-catenin signaling pathway, in a Tiam1 transgenic mouse model.


Oncotarget | 2015

The positive feedback between Snail and DAB2IP regulates EMT, invasion and metastasis in colorectal cancer

Jianmei Wang; Xiaohui Zhu; Jinlong Hu; Guoyang He; Xiaomei Li; Pingxiang Wu; Xiaoli Ren; Feifei Wang; Wen-Ting Liao; Li Liang; Yanqing Ding

DAB2IP has been identified as a tumor suppressor in several cancers but its oncogenic role and transcriptionally regulatory mechanisms in the progression of colorectal carcinoma (CRC) remain unknown. In this study, DAB2IP was down-regulated in CRC tissues and a valuable prognostic marker for survival of CRC patients, especially in the late stage. Moreover, DAB2IP was sufficient to suppress proliferation, epithelial-mesenchymal transition (EMT), invasion and metastasis in CRC. Mechanically, the linear complex of EZH2/HDAC1/Snail contributed to DAB2IP silencing in CRC cells. The study further proved that the positive feedback loop between Snail and DAB2IP existed in CRC cells and DAB2IP was required for Snail-induced aggressive cell behaviors. Finally, DAB2IP correlated negatively with Snail and EZH2 expressions in CRC tissues. Our findings reveal the suppressive role and a novel regulatory mechanism of DAB2IP expression in the progression of CRC. DAB2IP may be a potential, novel therapeutic and prognostic target for clinical CRC patients.

Collaboration


Dive into the Wen-Ting Liao's collaboration.

Top Co-Authors

Avatar

Yanqing Ding

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Li Liang

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Ya-Ping Ye

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Hong-Li Jiao

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Shu-Yang Wang

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhi-Yuan Xiao

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Tingting Li

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaoli Ren

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Jun-Feng Qiu

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Yan-Mei Cui

Southern Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge