Wen-Yang Tsai
University of Hawaii at Manoa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wen-Yang Tsai.
Journal of Virology | 2008
Chih-Yun Lai; Wen-Yang Tsai; Su-Ru Lin; Chuan-Liang Kao; Hsien-Ping Hu; Chwan-Chuen King; Han-Chung Wu; Gwong-Jen J. Chang; Wei-Kung Wang
ABSTRACT The antibody response to the envelope (E) glycoprotein of dengue virus (DENV) is known to play a critical role in both protection from and enhancement of disease, especially after primary infection. However, the relative amounts of homologous and heterologous anti-E antibodies and their epitopes remain unclear. In this study, we examined the antibody responses to E protein as well as to precursor membrane (PrM), capsid, and nonstructural protein 1 (NS1) of four serotypes of DENV by Western blot analysis of DENV serotype 2-infected patients with different disease severity and immune status during an outbreak in southern Taiwan in 2002. Based on the early-convalescent-phase sera tested, the rates of antibody responses to PrM and NS1 proteins were significantly higher in patients with secondary infection than in those with primary infection. A blocking experiment and neutralization assay showed that more than 90% of anti-E antibodies after primary infection were cross-reactive and nonneutralizing against heterologous serotypes and that only a minor proportion were type specific, which may account for the type-specific neutralization activity. Moreover, the E-binding activity in sera of 10 patients with primary infection was greatly reduced by amino acid replacements of three fusion loop residues, tryptophan at position 101, leucine at position 107, and phenylalanine at position 108, but not by replacements of those outside the fusion loop of domain II, suggesting that the predominantly cross-reactive anti-E antibodies recognized epitopes involving the highly conserved residues at the fusion loop of domain II. These findings have implications for our understanding of the pathogenesis of dengue and for the future design of subunit vaccine against DENV as well.
Nature Immunology | 2015
Wanwisa Dejnirattisai; Wiyada Wongwiwat; Sunpetchuda Supasa; Xiaokang Zhang; Xinghong Dai; Alexander Rouvinski; Amonrat Jumnainsong; Carolyn Edwards; Nguyen Than Ha Quyen; Thaneeya Duangchinda; Jonathan M. Grimes; Wen-Yang Tsai; Chih-Yun Lai; Wei-Kung Wang; Prida Malasit; Jeremy Farrar; Cameron P. Simmons; Z. Hong Zhou; Félix A. Rey; Juthathip Mongkolsapaya; Gavin R. Screaton
Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized.
Journal of Thrombosis and Haemostasis | 2007
Der-Shan Sun; Chwan-Chuen King; Hsuan-Shun Huang; Yung-Luen Shih; Chin-Cheng Lee; Wen-Yang Tsai; C.‐C. Yu; Hsin-Hou Chang
Background: The mechanisms responsible for thrombocytopenia associated with dengue fever (DF) and dengue hemorrhage fever (DHF) remain unclear. Objective: In this study, we investigated the pathogenic effects of dengue virus (DENV) non‐structural protein 1 (NS1) on the elicitation of platelet cross‐reactive antibodies. Results: The results showed that anti‐DENV NS1 immunoglobulins (Igs) derived from both patients with DF/DHF and recombinant NS1‐immunized rabbits could opsonize normal human platelets and enhance platelet–macrophage engagements in vitro. In addition, treatments with anti‐NS1 Igs abnormally activated human platelets and induced thrombocytopenia in mice. These prothrombotic characteristics of anti‐NS1 Ig might increase the disease burden of coagulant‐aberrant DHF patients. To test this hypothesis, we injected anti‐NS1 Igs into C57BL/6J mice that were preconditioned into a hypercoagulable state by warfarin treatments. When given before but not after platelet‐lysate pre‐adsorption, the anti‐NS1 Igs injection treatments significantly increased mortality, fibrin deposition in lung, and plasma D‐dimer levels, but significantly decreased anticoagulant proteins C, protein S and antithrombin III. Conclusions: These results suggest that the platelet‐bound antibody fractions of anti‐NS1 Ig are prothrombotic, which might exacerbate the severity of disease in hosts with an imbalanced coagulant system.
PLOS Neglected Tropical Diseases | 2012
Hong-En Lin; Wen-Yang Tsai; I-Ju Liu; Pi-Chun Li; Mei-Ying Liao; Jih-Jin Tsai; Yi-Chieh Wu; Chih-Yun Lai; Chih-Hsuan Lu; Jyh-Hsiung Huang; Gwong-Jen J. Chang; Han-Chung Wu; Wei-Kung Wang
Background The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies and vaccine development. While previous studies on domain III or domain I/II alone have reported several epitopes of monoclonal antibodies (mAbs) against DENV E protein, the possibility of interdomain epitopes and the relationship between epitopes and neutralizing potency remain largely unexplored. Methodology/Principal Findings We developed a dot blot assay by using 67 alanine mutants of predicted surface-exposed E residues as a systematic approach to identify epitopes recognized by mAbs and polyclonal sera, and confirmed our findings using a capture-ELISA assay. Of the 12 mouse mAbs tested, three recognized a novel epitope involving residues (Q211, D215, P217) at the central interface of domain II, and three recognized residues at both domain III and the lateral ridge of domain II, suggesting a more frequent presence of interdomain epitopes than previously appreciated. Compared with mAbs generated by traditional protocols, the potent neutralizing mAbs generated by a new protocol recognized multiple residues in A strand or residues in C strand/CC′ loop of DENV2 and DENV1, and multiple residues in BC loop and residues in DE loop, EF loop/F strand or G strand of DENV1. The predominant epitopes of anti-E antibodies in polyclonal sera were found to include both fusion loop and non-fusion residues in the same or adjacent monomer. Conclusions/Significance Our analyses have implications for epitope-specific diagnostics and epitope-based dengue vaccines. This high throughput method has tremendous application for mapping both intra and interdomain epitopes recognized by human mAbs and polyclonal sera, which would further our understanding of humoral immune responses to DENV at the epitope level.
Journal of Virology | 2013
Wen-Yang Tsai; Chih-Yun Lai; Yi-Chieh Wu; Hong-En Lin; Carolyn Edwards; Amonrat Jumnainsong; Srisakul Kliks; Scott B. Halstead; Juthathip Mongkolsapaya; Gavin R. Screaton; Wei-Kung Wang
ABSTRACT The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies (Abs) and vaccine development. Previous studies of human dengue-immune sera reported that a significant proportion of anti-E Abs, known as group-reactive (GR) Abs, were cross-reactive to all four DENV serotypes and to one or more other flaviviruses. Based on studies of mouse anti-E monoclonal antibodies (MAbs), GR MAbs were nonneutralizing or weakly neutralizing compared with type-specific MAbs; a GR response was thus not regarded as important for vaccine strategy. We investigated the epitopes, binding avidities, and neutralization potencies of 32 human GR anti-E MAbs. In addition to fusion loop (FL) residues in E protein domain II, human GR MAbs recognized an epitope involving both FL and bc loop residues in domain II. The neutralization potencies and binding avidities of GR MAbs derived from secondary DENV infection were stronger than those derived from primary infection. GR MAbs derived from primary DENV infection primarily blocked attachment, whereas those derived from secondary infection blocked DENV postattachment. Analysis of the repertoire of anti-E MAbs derived from patients with primary DENV infection revealed that the majority were GR, low-avidity, and weakly neutralizing MAbs, whereas those from secondary infection were primarily GR, high-avidity, and potently neutralizing MAbs. Our findings suggest that the weakly neutralizing GR anti-E Abs generated from primary DENV infection become potently neutralizing MAbs against the four serotypes after secondary infection. The observation that the dengue immune status of the host affects the quality of the cross-reactive Abs generated has implications for new strategies for DENV vaccination.
Journal of Virology | 2010
Szu-Chia Hsieh; Wen-Yang Tsai; Wei-Kung Wang
ABSTRACT The morphogenesis of many enveloped viruses, in which viral nucleocapsid complex interacts with envelope (E) protein, is known to take place at various sites along the secretory pathway. How viral E protein retains in a particular intracellular organelle for assembly remains incompletely understood. In this study, we investigated determinants in the E protein of dengue virus (DENV) for its retention and assembly in the endoplasmic reticulum (ER). A chimeric experiment between CD4 and DENV precursor membrane/E constructs suggested that the transmembrane domain (TMD) of E protein contains an ER retention signal. Substitutions of three nonhydrophobic residues at the N terminus of the first helix (T1) and at either the N or C terminus of the second helix of the TMD with three hydrophobic residues, as well as an increase in the length of T1, led to the release of chimeric CD4 and E protein from the ER, suggesting that short length and certain nonhydrophobic residues of the TMD are critical for ER retention. The analysis of enveloped viruses assembled at the plasma membrane and of those assembled in the Golgi complex and ER revealed a trend of decreasing length and increasing nonhydrophobic residues of the TMD of E proteins. Taken together, these findings support a TMD-dependent sorting for viral E proteins along the secretory pathway. Moreover, similar mutations introduced into the TMD of DENV E protein resulted in the increased production of virus-like particles (VLPs), suggesting that modifications of TMD facilitate VLP production and have implications for utilizing flaviviral VLPs as serodiagnostic antigens and vaccine candidates.
Clinical Infectious Diseases | 2017
Wen-Yang Tsai; Han Ha Youn; Carlos Brites; Jih-Jin Tsai; Jasmine Tyson; Celia Pedroso; Jan Felix Drexler; Mars Stone; Graham Simmons; Michael P. Busch; Marion C. Lanteri; Susan L. Stramer; Angel Balmaseda; Eva Harris; Wei-Kung Wang
Background The explosive spread of Zika virus (ZIKV) and associated microcephaly present an urgent need for sensitive and specific serodiagnostic tests, particularly for pregnant women in dengue virus (DENV)-endemic regions. Recent reports of enhanced ZIKV replication by dengue-immune sera have raised concerns about the role of previous DENV infection on the risk and severity of microcephaly and other ZIKV complications. Methods Enzyme-linked immunosorbent assays (ELISAs) based on ZIKV and DENV nonstructural protein 1 (NS1) were established to test acute, convalescent phase, and post-convalescent phase serum/plasma samples from reverse-transcription polymerase chain reaction-confirmed cases including 20 primary ZIKV, 25 ZIKV with previous DENV, 58 secondary DENV, and 16 primary DENV1 infections. Results ZIKV-NS1 immunoglobulin M (IgM) and immunoglobulin G (IgG) ELISAs combined can detect ZIKV infection with a sensitivity of 95% and specificity of 66.7%. The ZIKV-NS1 IgG cross-reactivity by samples from secondary DENV infection cases ranged from 66.7% to 28.1% (within 1 month to 1-2 years post-illness, respectively). Addition of DENV1-NS1 IgG ELISA can distinguish primary ZIKV infection; the ratio of absorbance of ZIKV-NS1 to DENV1-NS1 IgG ELISA can distinguish ZIKV with previous DENV and secondary DENV infections with a sensitivity of 87.5% and specificity of 81.3%. These findings were supported by analysis of sequential samples. Conclusions An algorithm for ZIKV serodiagnosis based on 3 simple ELISAs is proposed to distinguish primary ZIKV, ZIKV with previous DENV, and secondary DENV infections; this could be applied to serodiagnosis for ZIKV, serosurveillance, and monitoring ZIKV infection during pregnancy to understand the epidemiology, pathogenesis, and complications of ZIKV in dengue-endemic regions.
PLOS ONE | 2012
Wen-Yang Tsai; Szu-Chia Hsieh; Chih-Yun Lai; Hong-En Lin; Vivek R. Nerurkar; Wei-Kung Wang
Background The envelope (E) protein of dengue virus (DENV) is the major immunogen for dengue vaccine development. At the C-terminus are two α-helices (EH1 and EH2) and two transmembrane domains (ET1 and ET2). After synthesis, E protein forms a heterodimer with the precursor membrane (prM) protein, which has been shown as a chaperone for E protein and could prevent premature fusion of E protein during maturation. Recent reports of enhancement of DENV infectivity by anti-prM monoclonal antibodies (mAbs) suggest the presence of prM protein in dengue vaccine is potentially harmful. A better understanding of prM-E interaction and its effect on recognition of E and prM proteins by different antibodies would provide important information for future design of safe and effective subunit dengue vaccines. Methodology/Principal Findings In this study, we examined a series of C-terminal truncation constructs of DENV4 prME, E and prM. In the absence of E protein, prM protein expressed poorly. In the presence of E protein, the expression of prM protein increased in a dose-dependent manner. Radioimmunoprecipitation, sucrose gradient sedimentation and pulse-chase experiments revealed ET1 and EH2 were involved in prM-E interaction and EH2 in maintaining the stability of prM protein. Dot blot assay revealed E protein affected the recognition of prM protein by an anti-prM mAb; truncation of EH2 or EH1 affected the recognition of E protein by several anti-E mAbs, which was further verified by capture ELISA. The E protein ectodomain alone can be recognized well by all anti-E mAbs tested. Conclusions/Significance A C-terminal domain (EH2) of DENV E protein can affect the expression and stability of its chaperone prM protein. These findings not only add to our understanding of the interaction between prM and E proteins, but also suggest the ectodomain of E protein alone could be a potential subunit immunogen without inducing anti-prM response.
PLOS ONE | 2014
Szu-Chia Hsieh; Wen-Yang Tsai; Vivek R. Nerurkar; Wei-Kung Wang
Background The envelope (E) of dengue virus (DENV) is the major target of neutralizing antibodies and vaccine development. After biosynthesis E protein forms a heterodimer with precursor membrane (prM) protein. Recent reports of infection enhancement by anti-prM monoclonal antibodies (mAbs) suggest anti-prM responses could be potentially harmful. Previously, we studied a series of C-terminal truncation constructs expressing DENV type 4 prM/E or E proteins and found the ectodomain of E protein alone could be recognized by all 12 mAbs tested, suggesting E protein ectodomain as a potential subunit immunogen without inducing anti-prM response. The characteristics of DENV E protein ectodomain in the absence of prM protein remains largely unknown. Methodology/Principal Findings In this study, we investigated the expression, membrane association, glycosylation pattern, secretion and particle formation of E protein ectodomain of DENV4 in the presence or absence of prM protein. E protein ectodomain associated with membrane in or beyond trans-Golgi and contained primarily complex glycans, whereas full-length E protein associated with ER membrane and contained high mannose glycans. In the absence of prM protein, E protein ectodomain can secrete as well as form particles of approximately 49 nm in diameter, as revealed by sucrose gradient ultracentrifugation with or without detergent and electron microscopy. Mutational analysis revealed that the secretion of E protein ectodomain was affected by N-linked glycosylation and could be restored by treatment with ammonia chloride. Conclusions/Significance Considering the enhancement of DENV infectivity by anti-prM antibodies, our findings provide new insights into the expression and secretion of E protein ectodomain in the absence of prM protein and contribute to future subunit vaccine design.
Journal of Virology | 2018
Bobby Brooke Herrera; Wen-Yang Tsai; Charlotte A. Chang; Donald J. Hamel; Wei-Kung Wang; Yichen Lu; Souleymane Mboup; Phyllis J. Kanki
ABSTRACT Recent studies on the role of T cells in Zika virus (ZIKV) infection have shown that T cell responses to Asian ZIKV infection are important for protection, and that previous dengue virus (DENV) exposure amplifies the protective T cell response to Asian ZIKV. Human T cell responses to African ZIKV infection, however, remain unexplored. Here, we utilized the modified anthrax toxin delivery system to develop a flavivirus enzyme-linked immunosorbent spot (ELISPOT) assay. Using human ZIKV and DENV samples from Senegal, West Africa, our results demonstrate specific and cross-reactive T cell responses to nonstructural protein 3 (NS3). Specifically, we found that T cell responses to NS3 protease are ZIKV and DENV specific, but responses to NS3 helicase are cross-reactive. Sequential sample analyses revealed immune responses sustained many years after infection. These results have important implications for African ZIKV/DENV vaccine development, as well as for potential flavivirus diagnostics based on T cell responses. IMPORTANCE The recent Zika virus (ZIKV) epidemic in Latin America and the associated congenital microcephaly and Guillain-Barré syndrome have raised questions as to why we have not recognized these distinct clinical diseases in Africa. The human immunologic response to ZIKV and related flaviviruses in Africa represents a research gap that may shed light on the mechanisms contributing to protection. The goal of our study was to develop an inexpensive assay to detect and characterize the T cell response to African ZIKV and DENV. Our data show long-term specific and cross-reactive human immune responses against African ZIKV and DENV, suggesting the usefulness of a diagnostic based on the T cell response. Additionally, we show that prior flavivirus exposure influences the magnitude of the T cell response. The identification of immune responses to African ZIKV and DENV is of relevance to vaccine development.