Wencai Ma
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wencai Ma.
Lancet Oncology | 2014
Jason R. Westin; Fuliang Chu; Min Zhang; Luis Fayad; Larry W. Kwak; Nathan Fowler; Jorge Romaguera; Fredrick B. Hagemeister; Michelle A. Fanale; Felipe Samaniego; Lei Feng; Veerabhadran Baladandayuthapani; Zhiqiang Wang; Wencai Ma; Yanli Gao; Michael J. Wallace; Luis Vence; Laszlo Radvanyi; Tariq Muzzafar; Rinat Rotem-Yehudar; R. Eric Davis; Sattva S. Neelapu
BACKGROUND Endogenous or iatrogenic antitumour immune responses can improve the course of follicular lymphoma, but might be diminished by immune checkpoints in the tumour microenvironment. These checkpoints might include effects of programmed cell death 1 (PD1), a co-inhibitory receptor that impairs T-cell function and is highly expressed on intratumoral T cells. We did this phase 2 trial to investigate the activity of pidilizumab, a humanised anti-PD1 monoclonal antibody, with rituximab in patients with relapsed follicular lymphoma. METHODS We did this open-label, non-randomised trial at the University of Texas MD Anderson Cancer Center (Houston, TX, USA). Adult (≥18 years) patients with rituximab-sensitive follicular lymphoma relapsing after one to four previous therapies were eligible. Pidilizumab was administered at 3 mg/kg intravenously every 4 weeks for four infusions, plus eight optional infusions every 4 weeks for patients with stable disease or better. Starting 17 days after the first infusion of pidilizumab, rituximab was given at 375 mg/m(2) intravenously weekly for 4 weeks. The primary endpoint was the proportion of patients who achieved an objective response (complete response plus partial response according to Revised Response Criteria for Malignant Lymphoma). Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00904722. FINDINGS We enrolled 32 patients between Jan 13, 2010, and Jan 20, 2012. Median follow-up was 15.4 months (IQR 10.1-21.0). The combination of pidilizumab and rituximab was well tolerated, with no autoimmune or treatment-related adverse events of grade 3 or 4. The most common adverse events of grade 1 were anaemia (14 patients) and fatigue (13 patients), and the most common adverse event of grade 2 was respiratory infection (five patients). Of the 29 patients evaluable for activity, 19 (66%) achieved an objective response: complete responses were noted in 15 (52%) patients and partial responses in four (14%). INTERPRETATION The combination of pidilizumab plus rituximab is well tolerated and active in patients with relapsed follicular lymphoma. Our results suggest that immune checkpoint blockade is worthy of further study in follicular lymphoma. FUNDING National Institutes of Health, Leukemia and Lymphoma Society, Cure Tech, and University of Texas MD Anderson Cancer Center.
Nature Medicine | 2013
Yared Hailemichael; Zhimin Dai; Nina Jaffarzad; Yang Ye; Miguel A. Medina; Xue Fei Huang; Stephanie Dorta-Estremera; Nathaniel R. Greeley; Giovanni Nitti; Weiyi Peng; Chengwen Liu; Yanyan Lou; Zhiqiang Wang; Wencai Ma; Brian Rabinovich; Kimberly S. Schluns; Richard Eric Davis; Patrick Hwu; Willem W. Overwijk
To understand why cancer vaccine–induced T cells often do not eradicate tumors, we studied immune responses in mice vaccinated with gp100 melanoma peptide in incomplete Freunds adjuvant (peptide/IFA), which is commonly used in clinical cancer vaccine trials. Peptide/IFA vaccination primed tumor-specific CD8+ T cells, which accumulated not in tumors but rather at the persisting, antigen-rich vaccination site. Once there, primed T cells became dysfunctional and underwent antigen-driven, interferon-γ (IFN-γ)- and Fas ligand (FasL)-mediated apoptosis, resulting in hyporesponsiveness to subsequent vaccination. Provision of CD40-specific antibody, Toll-like receptor 7 (TLR7) agonist and interleukin-2 (IL-2) reduced T cell apoptosis but did not prevent vaccination-site sequestration. A nonpersisting vaccine formulation shifted T cell localization toward tumors, inducing superior antitumor activity while reducing systemic T cell dysfunction and promoting memory formation. These data show that persisting vaccine depots can induce specific T cell sequestration, dysfunction and deletion at vaccination sites; short-lived formulations may overcome these limitations and result in greater therapeutic efficacy of peptide-based cancer vaccines.
Cancer Discovery | 2016
Pei Ling Chen; Whijae Roh; Alexandre Reuben; Zachary A. Cooper; Christine N. Spencer; Peter A. Prieto; John P. Miller; Roland L. Bassett; Vancheswaran Gopalakrishnan; Khalida Wani; Mariana Petaccia de Macedo; Jacob Austin-Breneman; Hong Jiang; Qing Chang; Sangeetha M. Reddy; Wei Shen Chen; Michael T. Tetzlaff; R. Broaddus; Michael A. Davies; Jeffrey E. Gershenwald; Lauren E. Haydu; Alexander J. Lazar; Sapna Pradyuman Patel; Patrick Hwu; Wen-Jen Hwu; Adi Diab; Isabella C. Glitza; Scott E. Woodman; Luis Vence; Ignacio I. Wistuba
UNLABELLED Immune checkpoint blockade represents a major breakthrough in cancer therapy; however, responses are not universal. Genomic and immune features in pretreatment tumor biopsies have been reported to correlate with response in patients with melanoma and other cancers, but robust biomarkers have not been identified. We studied a cohort of patients with metastatic melanoma initially treated with cytotoxic T-lymphocyte-associated antigen-4 (CTLA4) blockade (n = 53) followed by programmed death-1 (PD-1) blockade at progression (n = 46), and analyzed immune signatures in longitudinal tissue samples collected at multiple time points during therapy. In this study, we demonstrate that adaptive immune signatures in tumor biopsy samples obtained early during the course of treatment are highly predictive of response to immune checkpoint blockade and also demonstrate differential effects on the tumor microenvironment induced by CTLA4 and PD-1 blockade. Importantly, potential mechanisms of therapeutic resistance to immune checkpoint blockade were also identified. SIGNIFICANCE These studies demonstrate that adaptive immune signatures in early on-treatment tumor biopsies are predictive of response to checkpoint blockade and yield insight into mechanisms of therapeutic resistance. These concepts have far-reaching implications in this age of precision medicine and should be explored in immune checkpoint blockade treatment across cancer types. Cancer Discov; 6(8); 827-37. ©2016 AACR.See related commentary by Teng et al., p. 818This article is highlighted in the In This Issue feature, p. 803.
Blood | 2012
Deborah J. Kuhn; Zuzana Berkova; Richard J. Jones; Richard Woessner; Chad C. Bjorklund; Wencai Ma; R. Eric Davis; Pei Lin; Hua Wang; Timothy Madden; Caimiao Wei; Veerabhadran Baladandayuthapani; Michael Wang; Sheeba K. Thomas; Jatin J. Shah; Donna M. Weber; Robert Z. Orlowski
Proteasome inhibition with bortezomib is a validated approach to the treatment of multiple myeloma, but drug resistance often emerges and limits its utility in the retreatment setting. To begin to identify some of the mechanisms involved, we developed bortezomib-resistant myeloma cell lines that, unlike previously reported models, showed no β5 subunit mutations. Instead, up-regulation of the insulin-like growth factor (IGF)-1 axis was identified, with increased autocrine and paracrine secretion of IGF-1, leading to increased activation of the IGF-1 receptor (IGF-1R). Exogenous IGF-1 reduced cellular sensitivity to bortezomib, whereas pharmacologic or small hairpin RNA-mediated IGF-1R suppression enhanced bortezomib sensitivity in cell lines and patient samples. In vitro studies with OSI-906, a clinically relevant dual IGF-1R and insulin receptor inhibitor, showed it acted synergistically with bortezomib, and potently resensitized bortezomib-resistant cell lines and patient samples to bortezomib. Importantly, OSI-906 in combination with bortezomib also overcame bortezomib resistance in an in vivo model of myeloma. Taken together, these data support the hypothesis that signaling through the IGF-1/IGF-1R axis contributes to acquired bortezomib resistance, and provide a rationale for combining bortezomib with IGF-1R inhibitors like OSI-906 to overcome or possibly prevent the emergence of bortezomib-refractory disease in the clinic.
Blood | 2014
Rodrigo Jacamo; Yuling Chen; Zhiqiang Wang; Wencai Ma; Mingjun Zhang; Erika L. Spaeth; Yunfei Wang; Venkata Lokesh Battula; Po Yee Mak; Schallmoser K; Peter P. Ruvolo; Wendy D. Schober; Elizabeth J. Shpall; Martin Nguyen; Strunk D; Carlos E. Bueso-Ramos; Sergej Konoplev; Richard Eric Davis; Marina Konopleva; Michael Andreeff
Leukemia cells are protected from chemotherapy-induced apoptosis by their interactions with bone marrow mesenchymal stromal cells (BM-MSCs). Yet the underlying mechanisms associated with this protective effect remain unclear. Genome-wide gene expression profiling of BM-MSCs revealed that coculture with leukemia cells upregulated the transcription of genes associated with nuclear factor (NF)-κB signaling. Moreover, primary BM-MSCs from leukemia patients expressed NF-κB target genes at higher levels than their normal BM-MSC counterparts. The blockade of NF-κB activation via chemical agents or the overexpression of the mutant form of inhibitor κB-α (IκBα) in BM-MSCs markedly reduced the stromal-mediated drug resistance in leukemia cells in vitro and in vivo. In particular, our unique in vivo model of human leukemia BM microenvironment illustrated a direct link between NF-κB activation and stromal-associated chemoprotection. Mechanistic in vitro studies revealed that the interaction between vascular cell adhesion molecule 1 (VCAM-1) and very late antigen-4 (VLA-4) played an integral role in the activation of NF-κB in the stromal and tumor cell compartments. Together, these results suggest that reciprocal NF-κB activation in BM-MSCs and leukemia cells is essential for promoting chemoresistance in the transformed cells, and targeting NF-κB or VLA-4/VCAM-1 signaling could be a clinically relevant mechanism to overcome stroma-mediated chemoresistance in BM-resident leukemia cells.
Journal of Biological Chemistry | 2011
Chad C. Bjorklund; Wencai Ma; Zhiqiang Wang; R. Eric Davis; Deborah J. Kuhn; Steven M. Kornblau; Michael Wang; Jatin J. Shah; Robert Z. Orlowski
Lenalidomide plays an important role in our chemotherapeutic armamentarium against multiple myeloma, in part by exerting direct anti-proliferative and pro-apoptotic effects. Unfortunately, long-term exposure leads to the development of drug resistance through unknown mechanisms, and we therefore sought to identify pathways that could be responsible for this phenotype. Chronic drug exposure produced myeloma cell lines that were tolerant of the direct effects of lenalidomide, with a degree of resistance of up to 2,500-fold. Gene expression profiling and pathway analysis identified dysregulation of the Wnt/β-catenin pathway as a consistent change across four independent cell isolates, and a pair of primary plasma cell samples. Acute drug treatment also increased β-catenin transcription by 3-fold or more, and both acute and chronic exposure resulted in enhanced accumulation of β-catenin protein by up to 20-fold or more. This produced Wnt/β-catenin pathway activation, as judged by increased activity of a lymphoid enhancer factor/T-cell factor promoter reporter, and enhanced accumulation of the downstream targets cyclin D1 and c-Myc. Components of the β-catenin destruction complex were also impacted by lenalidomide, which suppressed casein kinase 1α expression while augmenting glycogen synthase kinase 3α/β phosphorylation. Stimulation of Wnt/β-catenin signaling with recombinant Wnt-3a, or by overexpression of β-catenin, reduced the anti-proliferative activity of lenalidomide. Conversely, suppression of β-catenin with small hairpin RNAs restored plasma cell sensitivity to lenalidomide. Together, these findings support the hypothesis that lenalidomide mediates activation of Wnt/β-catenin signaling in plasma cells as a mechanism of inducible chemoresistance through effects at the transcriptional and post-translational levels.
Blood | 2013
V. Lokesh Battula; Ye Chen; Maria da Graca Cabreira; Vivian Ruvolo; Zhiqiang Wang; Wencai Ma; Sergej Konoplev; Elizabeth J. Shpall; Karen M. Lyons; Dirk Strunk; Carlos E. Bueso-Ramos; Richard Eric Davis; Marina Konopleva; Michael Andreeff
Mesenchymal stromal cells (MSCs) are a major component of the leukemia bone marrow (BM) microenvironment. Connective tissue growth factor (CTGF) is highly expressed in MSCs, but its role in the BM stroma is unknown. Therefore, we knocked down (KD) CTGF expression in human BM-derived MSCs by CTGF short hairpin RNA. CTGF KD MSCs exhibited fivefold lower proliferation compared with control MSCs and had markedly fewer S-phase cells. CTGF KD MSCs differentiated into adipocytes at a sixfold higher rate than controls in vitro and in vivo. To study the effect of CTGF on engraftment of leukemia cells into BM, an in vivo model of humanized extramedullary BM (EXM-BM) was developed in NOD/SCID/IL-2rg(null) mice. Transplanted Nalm-6 or Molm-13 human leukemia cells engrafted at a threefold higher rate in adipocyte-rich CTGF KD MSC-derived EXM-BM than in control EXM-BM. Leptin was found to be highly expressed in CTGF KD EXM-BM and in BM samples of patients with acute myeloid and acute lymphoblastic leukemia, whereas it was not expressed in normal controls. Given the established role of the leptin receptor in leukemia cells, the data suggest an important role of CTGF in MSC differentiation into adipocytes and of leptin in homing and progression of leukemia.
Scientific Reports | 2012
Colleen M. O'Connor; Sabina Sheppard; Cassie A. Hartline; Helen Huls; Mark C. Johnson; Shana L. Palla; Sourindra Maiti; Wencai Ma; R. Eric Davis; Suzanne Craig; Dean A. Lee; Richard E. Champlin; Heather Wilson; Laurence J.N. Cooper
Clinical observations reveal that an augmented pace of T-cell recovery after chemotherapy correlates with improved tumor-free survival, suggesting the add-back of T cells after chemotherapy may improve outcomes. To evaluate adoptive immunotherapy treatment for B-lineage non-Hodgkin lymphoma (NHL), we expanded T cells from client-owned canines diagnosed with NHL on artificial antigen presenting cells (aAPC) in the presence of human interleukin (IL)-2 and IL-21. Graded doses of autologous T cells were infused after CHOP chemotherapy and persisted for 49 days, homed to tumor, and significantly improved survival. Serum thymidine kinase changes predicted T-cell engraftment, while anti-tumor effects correlated with neutrophil-to-lymphocyte ratios and granzyme B expression in manufactured T cells. Therefore, chemotherapy can be used to modulate infused T-cell responses to enhance anti-tumor effects. The companion canine model has translational implications for human immunotherapy which can be readily exploited since clinical-grade canine and human T cells are propagated using identical approaches.
Blood | 2015
Byung Sik Cho; Zhihong Zeng; Hong Mu; Zhiqiang Wang; Sergej Konoplev; Teresa McQueen; Marina Protopopova; Jorge Cortes; Joseph R. Marszalek; Sheng Bin Peng; Wencai Ma; R. Eric Davis; Donald Thornton; Michael Andreeff; Marina Konopleva
Targeting the stromal cell-derived factor 1α (SDF-1α)/C-X-C chemokine receptor type 4 (CXCR4) axis has been shown to be a promising therapeutic approach to overcome chemoresistance in acute myeloid leukemia (AML). We investigated the antileukemia efficacy of a novel peptidic CXCR4 antagonist, LY2510924, in preclinical models of AML. LY2510924 rapidly and durably blocked surface CXCR4 and inhibited stromal cell-derived factor 1 (SDF-1)α-induced chemotaxis and prosurvival signals of AML cells at nanomolar concentrations more effectively than the small-molecule CXCR4 antagonist AMD3100. In vitro, LY2510924 chiefly inhibited the proliferation of AML cells with little induction of cell death and reduced protection against chemotherapy by stromal cells. In mice with established AML, LY2510924 caused initial mobilization of leukemic cells into the circulation followed by reduction in total tumor burden. LY2510924 had antileukemia effects as monotherapy as well as in combination with chemotherapy. Gene expression profiling of AML cells isolated from LY2510924-treated mice demonstrated changes consistent with loss of SDF-1α/CXCR4 signaling and suggested reduced proliferation and induction of differentiation, which was proved by showing the attenuation of multiple prosurvival pathways such as PI3K/AKT, MAPK, and β-catenin and myeloid differentiation in vivo. Effective disruption of the SDF-1α/CXCR4 axis by LY2510924 may translate into effective antileukemia therapy in future clinical applications.
Science Signaling | 2016
Jo Ishizawa; Kensuke Kojima; Dhruv Chachad; Peter P. Ruvolo; Vivian Ruvolo; Rodrigo Jacamo; Gautam Borthakur; Hong Mu; Zhihong Zeng; Yoko Tabe; Joshua E. Allen; Zhiqiang Wang; Wencai Ma; Hans C. Lee; Robert Z. Orlowski; Dos D. Sarbassov; Philip L. Lorenzi; Xuelin Huang; Sattva S. Neelapu; Timothy J. McDonnell; Roberto N. Miranda; Michael Wang; Hagop M. Kantarjian; Marina Konopleva; R. Eric Davis; Michael Andreeff
ONC201 triggers an apoptotic cellular stress response in both solid and blood tumors. Stressing cancer cells to death The anticancer drug ONC201 triggers cell death in various tumor types. A pair of papers (see also the Focus by Greer and Lipkowitz) shows that ONC201 activated cell stress pathways that depended on the activation of the transcription factor ATF4. Kline et al. showed that this stress response to ONC201 occurred in cells derived from various types of solid tumors, in which ATF4 activation led to an increase in the abundance of the proapoptotic protein TRAIL and its receptor DR5. Ishizawa et al. demonstrated that in acute myeloid leukemias and mantle cell lymphoma, ONC201 triggered apoptosis and inhibited mTORC1 signaling, a pathway that promotes cell growth and proliferation. The findings reveal more details about ONC201’s mechanism of action, potentially enabling patient stratification and future development to improve its efficacy. The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies.