Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wendi B. Heinzelman is active.

Publication


Featured researches published by Wendi B. Heinzelman.


IEEE Transactions on Wireless Communications | 2002

An application-specific protocol architecture for wireless microsensor networks

Wendi B. Heinzelman; Anantha P. Chandrakasan; Hari Balakrishnan

Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.


acm/ieee international conference on mobile computing and networking | 1999

Adaptive protocols for information dissemination in wireless sensor networks

Wendi B. Heinzelman; Joanna Kulik; Hari Balakrishnan

In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation), that efficiently disseminates information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called meta-data. They use meta-data negotiations to eliminate the transmission of redundant data throughout the network. In addition, SPIN nodes can base their communication decisions both upon application-specific knowledge of the data and upon knowledge of the resources that are available to them. This allows the sensors to efficiently distribute data given a limited energy supply. We simulate and analyze the performance of two specific SPIN protocols, comparing them to other possible approaches and a theoretically optimal protocol. We find that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches. We also find that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.


IEEE Network | 2004

Middleware to support sensor network applications

Wendi B. Heinzelman; Amy L. Murphy; Hervaldo S. Carvalho; Mark A. Perillo

Current trends in computing include increases in both distribution and wireless connectivity, leading to highly dynamic, complex environments on top of which applications must be built. The task of designing and ensuring the correctness of applications in these environments is similarly becoming more complex. The unified goal of much of the research in distributed wireless systems is to provide higher-level abstractions of complex low-level concepts to application programmers, easing the design and implementation of applications. A new and growing class of applications for wireless sensor networks require similar complexity encapsulation. However, sensor networks have some unique characteristics, including dynamic availability of data sources and application quality of service requirements, that are not common to other types of applications. These unique features, combined with the inherent distribution of sensors, and limited energy and bandwidth resources, dictate the need for network functionality and the individual sensors to be controlled to best serve the application requirements. In this article, we describe different types of sensor network applications and discuss existing techniques for managing these types of networks. We also overview a variety of related middleware and argue that no existing approach provides all the management tools required by sensor network applications. To meet this need, we have developed a new middleware called MiLAN. MiLAN allows applications to specify a policy for managing the network and sensors, but the actual implementation of this policy is effected within MiLAN. We describe MiLAN and show its effectiveness through the design of a sensor-based personal health monitor.


IEEE Journal on Selected Areas in Communications | 2005

QoS-aware routing based on bandwidth estimation for mobile ad hoc networks

Lei Chen; Wendi B. Heinzelman

Routing protocols for mobile ad hoc networks (MANETs) have been explored extensively in recent years. Much of this work is targeted at finding a feasible route from a source to a destination without considering current network traffic or application requirements. Therefore, the network may easily become overloaded with too much traffic and the application has no way to improve its performance under a given network traffic condition. While this may be acceptable for data transfer, many real-time applications require quality-of-service (QoS) support from the network. We believe that such QoS support can be achieved by either finding a route to satisfy the application requirements or offering network feedback to the application when the requirements cannot be met. We propose a QoS-aware routing protocol that incorporates an admission control scheme and a feedback scheme to meet the QoS requirements of real-time applications. The novel part of this QoS-aware routing protocol is the use of the approximate bandwidth estimation to react to network traffic. Our approach implements these schemes by using two bandwidth estimation methods to find the residual bandwidth available at each node to support new streams. We simulate our QoS-aware routing protocol for nodes running the IEEE 802.11 medium access control. Results of our experiments show that the packet delivery ratio increases greatly, and packet delay and energy dissipation decrease significantly, while the overall end-to-end throughput is not impacted, compared with routing protocols that do not provide QoS support.


international parallel and distributed processing symposium | 2005

Prolonging the lifetime of wireless sensor networks via unequal clustering

Stanislava Soro; Wendi B. Heinzelman

Organizing wireless sensor networks into clusters enables the efficient utilization of the limited energy resources of the deployed sensor nodes. However, the problem of unbalanced energy consumption exists, and it is tightly bound to the role and to the location of a particular node in the network. If the network is organized into heterogeneous clusters, where some more powerful nodes take on the cluster head role to control network operation, it is important to ensure that energy dissipation of these cluster head nodes is balanced. Oftentimes the network is organized into clusters of equal size, but such equal clustering results in an unequal load on the cluster head nodes. Instead, we propose an unequal clustering size (UCS) model for network organization, which can lead to more uniform energy dissipation among the cluster head nodes, thus increasing network lifetime. Also, we expand this approach to homogeneous sensor networks and show that UCS can lead to more uniform energy dissipation in a homogeneous network as well.


advances in multimedia | 2009

A Survey of Visual Sensor Networks

Stanislava Soro; Wendi B. Heinzelman

Visual sensor networks have emerged as an important class of sensor-based distributed intelligent systems, with unique performance, complexity, and quality of service challenges. Consisting of a large number of low-power camera nodes, visual sensor networks support a great number of novel vision-based applications. The camera nodes provide information from a monitored site, performing distributed and collaborative processing of their collected data. Using multiple cameras in the network provides different views of the scene, which enhances the reliability of the captured events. However, the large amount of image data produced by the cameras combined with the networks resource constraints require exploring new means for data processing, communication, and sensor management. Meeting these challenges of visual sensor networks requires interdisciplinary approaches, utilizing vision processing, communications and networking, and embedded processing. In this paper, we provide an overview of the current state-of-the-art in the field of visual sensor networks, by exploring several relevant research directions. Our goal is to provide a better understanding of current research problems in the different research fields of visual sensor networks, and to show how these different research fields should interact to solve the many challenges of visual sensor networks.


international workshop on wireless sensor networks and applications | 2002

Infrastructure tradeoffs for sensor networks

Sameer Tilak; Nael B. Abu-Ghazaleh; Wendi B. Heinzelman

In a sensor network, the infrastructure (in terms of the sensor capabilities, number of sensors, and deployment strategy) plays a significant role in determining the performance of the network. In this paper, we study the effect of infrastructure decisions on the performance of a sensor network. We study the effect of the infrastructure for two types of network delivery models (phenomenon driven and continuous) and different network protocols (DSR, DSDV and AODV). We show the performance both in terms of network efficiency as well as meeting the application accuracy and latency demands. By exploring the criteria for effective infrastructure configurations, we open the door for network optimizations that control the effective topology to better achieve the application requirements.


IEEE Transactions on Mobile Computing | 2008

General Network Lifetime and Cost Models for Evaluating Sensor Network Deployment Strategies

Zhao Cheng; Mark A. Perillo; Wendi B. Heinzelman

In multihop wireless sensor networks that are often characterized by many-to-one (convergecast) traffic patterns, problems related to energy imbalance among sensors often appear. Sensors closer to a data sink are usually required to forward a large amount of traffic for sensors farther from the data sink. Therefore, these sensors tend to die early, leaving areas of the network completely unmonitored and reducing the functional network lifetime. In our study, we explore possible sensor network deployment strategies that maximize sensor network lifetime by mitigating the problem of the hot spot around the data sink. Strategies such as variable-range transmission power control with optimal traffic distribution, mobile-data-sink deployment, multiple-data-sink deployment, nonuniform initial energy assignment, and intelligent sensor/relay deployment are investigated. We suggest a general model to analyze and evaluate these strategies. In this model, we not only discover how to maximize the network lifetime given certain network constraints but also consider the factor of extra costs involved in more complex deployment strategies. This paper presents a comprehensive analysis on the maximum achievable sensor network lifetime for different deployment strategies, and it also provides practical cost-efficient sensor network deployment guidelines.


ad hoc networks | 2009

Cluster head election techniques for coverage preservation in wireless sensor networks

Stanislava Soro; Wendi B. Heinzelman

Coverage preservation is one of the basic QoS requirements of wireless sensor networks, yet this problem has not been sufficiently explored in the context of cluster-based sensor networks. Specifically, it is not known how to select the best candidates for the cluster head roles in applications that require complete coverage of the monitored area over long periods of time. In this paper, we take a unique look at the cluster head election problem, specifically concentrating on applications where the maintenance of full network coverage is the main requirement. Our approach for cluster-based network organization is based on a set of coverage-aware cost metrics that favor nodes deployed in densely populated network areas as better candidates for cluster head nodes, active sensor nodes and routers. Compared with using traditional energy-based selection methods, using coverage-aware selection of cluster head nodes, active sensor nodes and routers in a clustered sensor network increases the time during which full coverage of the monitored area can be maintained anywhere from 25% to 4.5x, depending on the application scenario.


international symposium on computers and communications | 2012

Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture

Tolga Soyata; Rajani Muraleedharan; Colin Funai; Minseok Kwon; Wendi B. Heinzelman

Face recognition applications for airport security and surveillance can benefit from the collaborative coupling of mobile and cloud computing as they become widely available today. This paper discusses our work with the design and implementation of face recognition applications using our mobile-cloudlet-cloud architecture named MOCHA and its initial performance results. The challenge lies with how to perform task partitioning from mobile devices to cloud and distribute compute load among cloud servers (cloudlet) to minimize the response time given diverse communication latencies and server compute powers. Our preliminary simulation results show that optimal task partitioning algorithms significantly affect response time with heterogeneous latencies and compute powers. Motivated by these results, we design, implement, and validate the basic functionalities of MOCHA as a proof-of-concept, and develop algorithms that minimize the overall response time for face recognition. Our experimental results demonstrate that high-powered cloudlets are technically feasible and indeed help reduce overall processing time when face recognition applications run on mobile devices using the cloud as the backend servers.

Collaboration


Dive into the Wendi B. Heinzelman's collaboration.

Top Co-Authors

Avatar

Ilker Demirkol

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

He Ba

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhao Cheng

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Alireza Seyedi

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Bulent Tavli

TOBB University of Economics and Technology

View shared research outputs
Top Co-Authors

Avatar

Tianqi Wang

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge