Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wendi R. Mason is active.

Publication


Featured researches published by Wendi R. Mason.


Nature Genetics | 2013

Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis

Tasha E. Fingerlin; Elissa Murphy; Weiming Zhang; Anna L. Peljto; Kevin K. Brown; Mark P. Steele; James E. Loyd; Gregory P. Cosgrove; David A. Lynch; Steve D. Groshong; Harold R. Collard; Paul J. Wolters; Williamson Ziegler Bradford; Karl Kossen; Scott D. Seiwert; Roland M. du Bois; Christine Kim Garcia; Megan S. Devine; Gunnar Gudmundsson; Helgi J. Ísaksson; Naftali Kaminski; Yingze Zhang; Kevin F. Gibson; Lisa H. Lancaster; Joy D. Cogan; Wendi R. Mason; Toby M. Maher; Philip L. Molyneaux; Athol U. Wells; Miriam F. Moffatt

We performed a genome-wide association study of non-Hispanic, white individuals with fibrotic idiopathic interstitial pneumonias (IIPs; n = 1,616) and controls (n = 4,683), with follow-up replication analyses in 876 cases and 1,890 controls. We confirmed association with TERT at 5p15, MUC5B at 11p15 and the 3q26 region near TERC, and we identified seven newly associated loci (Pmeta = 2.4 × 10−8 to 1.1 × 10−19), including FAM13A (4q22), DSP (6p24), OBFC1 (10q24), ATP11A (13q34), DPP9 (19p13) and chromosomal regions 7q22 and 15q14-15. Our results suggest that genes involved in host defense, cell-cell adhesion and DNA repair contribute to risk of fibrotic IIPs.


Chest | 2009

Obstructive Sleep Apnea Is Common in Idiopathic Pulmonary Fibrosis

Lisa H. Lancaster; Wendi R. Mason; James Parnell; Todd W. Rice; James E. Loyd; Aaron P. Milstone; Harold R. Collard; Beth A. Malow

BACKGROUND From 1984 to 2006, studies of sleep in patients with interstitial lung disease revealed disturbed sleep, frequent nocturnal desaturations, nocturnal cough, and obstructive sleep apnea (OSA). Our goal was to analyze OSA in an outpatient population of stable patients with idiopathic pulmonary fibrosis (IPF). METHODS Patients with IPF who had been followed up in the Vanderbilt Pulmonary Clinic were asked to participate. All patients were given a diagnosis of IPF by the 2000 American Thoracic Society consensus statement criteria. Subjects completed an Epworth sleepiness scale (ESS) questionnaire and a sleep apnea scale of sleep disorders questionnaire (SA-SDQ) before undergoing nocturnal polysomnography (NPSG). OSA was defined as an apnea-hypopnea index (AHI) of > 5 events per hour. RESULTS Fifty subjects enrolled and completed a NPSG. The mean age was 64.9 years, and the mean BMI was 32.3. OSA was diagnosed in 88% of subjects. Ten subjects (20%) had mild OSA (AHI, 5 to 15 events per hour), and 34 subjects (68%) had moderate-to-severe OSA (AHI, > 15 events per hour). Only 6 subjects (12%) had a normal AHI. One patient was asymptomatic as determined by ESS and SA-SDQ, but had an AHI of 24 events per hour. The sensitivity of the ESS was 75% with a specificity of 15%, whereas the SA-SDQ had a sensitivity of 88% with a specificity of 50%. BMI did not correlate strongly with AHI (r = 0.30; p = 0.05). CONCLUSIONS OSA is prevalent in patients with IPF and may be underrecognized by primary care providers and specialists. Neither ESS nor SA-SDQ alone or in combination was a strong screening tool. Given the high prevalence found in our sample, formal sleep evaluation and polysomnography should be considered in patients with IPF.


American Journal of Respiratory and Critical Care Medicine | 2015

RARE VARIANTS IN RTEL1 ARE ASSOCIATED WITH FAMILIAL INTERSTITIAL PNEUMONIA

Joy D. Cogan; Jonathan A. Kropski; Min Zhao; Daphne B. Mitchell; Lynette Rives; Cheryl Markin; Errine T. Garnett; Keri H. Montgomery; Wendi R. Mason; David F. McKean; Julia Powers; Elissa Murphy; Lana M. Olson; Leena Choi; Dong-Sheng Cheng; Elizabeth Blue; Lisa R. Young; Lisa H. Lancaster; Mark P. Steele; Kevin K. Brown; Marvin I. Schwarz; Tasha E. Fingerlin; David A. Schwartz; William Lawson; James E. Loyd; Zhongming Zhao; John A. Phillips; Timothy S. Blackwell

RATIONALE Up to 20% of cases of idiopathic interstitial pneumonia cluster in families, comprising the syndrome of familial interstitial pneumonia (FIP); however, the genetic basis of FIP remains uncertain in most families. OBJECTIVES To determine if new disease-causing rare genetic variants could be identified using whole-exome sequencing of affected members from FIP families, providing additional insights into disease pathogenesis. METHODS Affected subjects from 25 kindreds were selected from an ongoing FIP registry for whole-exome sequencing from genomic DNA. Candidate rare variants were confirmed by Sanger sequencing, and cosegregation analysis was performed in families, followed by additional sequencing of affected individuals from another 163 kindreds. MEASUREMENTS AND MAIN RESULTS We identified a potentially damaging rare variant in the gene encoding for regulator of telomere elongation helicase 1 (RTEL1) that segregated with disease and was associated with very short telomeres in peripheral blood mononuclear cells in 1 of 25 families in our original whole-exome sequencing cohort. Evaluation of affected individuals in 163 additional kindreds revealed another eight families (4.7%) with heterozygous rare variants in RTEL1 that segregated with clinical FIP. Probands and unaffected carriers of these rare variants had short telomeres (<10% for age) in peripheral blood mononuclear cells and increased T-circle formation, suggesting impaired RTEL1 function. CONCLUSIONS Rare loss-of-function variants in RTEL1 represent a newly defined genetic predisposition for FIP, supporting the importance of telomere-related pathways in pulmonary fibrosis.


PLOS ONE | 2013

Bronchoscopic Cryobiopsy for the Diagnosis of Diffuse Parenchymal Lung Disease

Jonathan A. Kropski; Jason M. Pritchett; Wendi R. Mason; Lakshmi Sivarajan; Linda A. Gleaves; Joyce E. Johnson; Lisa H. Lancaster; William Lawson; Timothy S. Blackwell; Mark P. Steele; James E. Loyd; Otis B. Rickman

Background Although in some cases clinical and radiographic features may be sufficient to establish a diagnosis of diffuse parenchymal lung disease (DPLD), surgical lung biopsy is frequently required. Recently a new technique for bronchoscopic lung biopsy has been developed using flexible cryo-probes. In this study we describe our clinical experience using bronchoscopic cryobiopsy for diagnosis of diffuse lung disease. Methods A retrospective study of subjects who had undergone bronchoscopic cryobiopsy for evaluation of DPLD at an academic tertiary care center from January 1, 2012 through January 15, 2013 was performed. The procedure was performed using a flexible bronchoscope to acquire biopsies of lung parenchyma. H&E stained biopsies were reviewed by an expert lung pathologist. Results Twenty-five eligible subjects were identified. With a mean area of 64.2 mm2, cryobiopsies were larger than that typically encountered with traditional transbronchial forceps biopsy. In 19 of the 25 subjects, a specific diagnosis was obtained. In one additional subject, biopsies demonstrating normal parenchyma were felt sufficient to exclude diffuse lung disease as a cause of dyspnea. The overall diagnostic yield of bronchoscopic cryobiopsy was 80% (20/25). The most frequent diagnosis was usual interstitial pneumonia (UIP) (n = 7). Three of the 25 subjects ultimately required surgical lung biopsy. There were no significant complications. Conclusion In patients with suspected diffuse parenchymal lung disease, bronchoscopic cryobiopsy is a promising and minimally invasive approach to obtain lung tissue with high diagnostic yield.


BMC Infectious Diseases | 2015

Fibrosing mediastinitis complicating prior histoplasmosis is associated with human leukocyte antigen DQB1*04:02 − a case control study

Stephen B. Strock; Silvana Gaudieri; S. Mallal; Chang Yu; Daphne B. Mitchell; Joy D. Cogan; Wendi R. Mason; Deborah Crowe; James E. Loyd

BackgroundFibrosing mediastinitis (FM) is an idiosyncratic reaction to infection with Histoplasma capsulatum with a prevalence of 3:100,000 people infected. The rarity of post-histoplasmosis fibrosing mediastinitis (PHFM) in areas where H. capsulatum is endemic suggests that an abnormal immunological host response may be responsible for the development of fibrosis. Our group previously reported an association between subjects with PHFM and human leukocyte antigen (HLA)-A*02. We sought to confirm or extend those findings with application of high resolution HLA typing in a cohort of subjects with PHFM.MethodsHigh-resolution HLA typing was performed on DNA samples from a new cohort 34 patients with PHFM. Control cohorts included 707 subjects from the “European American” subset of the National Marrow Donor Program® (NMDP) and 700 subjects from Dialysis Clinic, Inc. (DCI). The carriage frequencies of the HLA alleles identified in the PHFM, NMDP, and DCI cohorts were calculated and then all were compared.ResultsWe found an increase in the carriage frequency of HLA-DQB1*04:02 in PHFM subjects relative to the controls (0.15 versus 0.07 in DCI and 0.05 in NMDP; p = 0.08 and 0.03). Multiple logistic regression showed that DQB1*04:02 was statistically significant (p = 0.04), while DQB1*03:02 and C*03:04 had point estimates of OR > 1, though they did not reach statistical significance. The HLA-A*02 association was not replicated.ConclusionsHLA-DQB1*04:02 is associated with PHFM, which supports the premise that an aberrant host immune response contributes to the development of PHFM.


Nature Genetics | 2013

Erratum: Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis (Nature Genetics (2013) 45 (613-620))

Tasha E. Fingerlin; Elissa Murphy; Weiming Zhang; Anna L. Peljto; Kevin K. Brown; Mark P. Steele; James E. Loyd; Gregory P. Cosgrove; David A. Lynch; Steve D. Groshong; Harold R. Collard; Paul J. Wolters; Williamson Ziegler Bradford; Karl Kossen; Scott D. Seiwert; Roland M. du Bois; Christine Kim Garcia; Megan S. Devine; Gunnar Gudmundsson; Helgi J. Ísaksson; Naftali Kaminski; Yingze Zhang; Kevin F. Gibson; Lisa H. Lancaster; Joy D. Cogan; Wendi R. Mason; Toby M. Maher; Philip L. Molyneaux; Athol U. Wells; Miriam F. Moffatt

Tasha E Fingerlin, Elissa Murphy, Weiming Zhang, Anna L Peljto, Kevin K Brown, Mark P Steele, James E Loyd, Gregory P Cosgrove, David Lynch, Steve Groshong, Harold R Collard, Paul J Wolters, Williamson Z Bradford, Karl Kossen, Scott D Seiwert, Roland M du Bois, Christine Kim Garcia, Megan S Devine, Gunnar Gudmundsson, Helgi J Isaksson, Naftali Kaminski, Yingze Zhang, Kevin F Gibson, Lisa H Lancaster, Joy D Cogan, Wendi R Mason, Toby M Maher, Philip L Molyneaux, Athol U Wells, Miriam F Moffatt, Moises Selman, Annie Pardo, Dong Soon Kim, James D Crapo, Barry J Make, Elizabeth A Regan, Dinesha S Walek, Jerry J Daniel, Yoichiro Kamatani, Diana Zelenika, Keith Smith, David McKean, Brent S Pedersen, Janet Talbert, Raven N Kidd, Cheryl R Markin, Kenneth B Beckman, Mark Lathrop, Marvin I Schwarz & David A Schwartz Nat. Genet. 45, 613–620 (2013); published online 14 April 2013; corrected after print 1 October 2013


Science Translational Medicine | 2018

PD-1 up-regulation on CD4+ T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production

Lindsay J. Celada; Jonathan A. Kropski; Jose D. Herazo-Maya; Weifeng Luo; Amy Creecy; Andrew T. Abad; Ozioma S. Chioma; Grace Lee; Natalie E. Hassell; Guzel Shaginurova; Yufen Wang; Joyce E. Johnson; Amy Kerrigan; Wendi R. Mason; Robert P. Baughman; Gregory D. Ayers; Gordon R. Bernard; Daniel A. Culver; Courtney G. Montgomery; Toby M. Maher; Philip L. Molyneaux; Imre Noth; Steven E. Mutsaers; Cecilia M. Prêle; R. Stokes Peebles; Dawn C. Newcomb; Naftali Kaminski; Timothy S. Blackwell; Luc Van Kaer; Wonder P. Drake

PD-1+TH17 cells enhance collagen-1 production from human lung fibroblasts. PD-1–expressing T cells prompt pulmonary fibrosis Although T cells expressing programmed cell death-1 (PD-1) are sometimes described as exhausted, they are not too tuckered out to wreak havoc in a variety of settings. Celada et al. examined cells from patients with sarcoidosis or idiopathic pulmonary fibrosis and saw an increase in PD-1+CD4+ T cells relative to healthy controls. These cells were mostly TH17 cells and were able to induce fibroblasts to produce collagen in vitro. Blocking PD-1 in the coculture system prevented this induction and associated cytokine production from the T cells. The authors then demonstrated that blocking PD-1 in a mouse bleomycin model reduced fibrosis symptoms. Putting these cells to sleep may be a way to help patients with pulmonary fibrosis. Pulmonary fibrosis is a progressive inflammatory disease with high mortality and limited therapeutic options. Previous genetic and immunologic investigations suggest common intersections between idiopathic pulmonary fibrosis (IPF), sarcoidosis, and murine models of pulmonary fibrosis. To identify immune responses that precede collagen deposition, we conducted molecular, immunohistochemical, and flow cytometric analysis of human and murine specimens. Immunohistochemistry revealed programmed cell death-1 (PD-1) up-regulation on IPF lymphocytes. PD-1+CD4+ T cells with reduced proliferative capacity and increased transforming growth factor–β (TGF-β)/interleukin-17A (IL-17A) expression were detected in IPF, sarcoidosis, and bleomycin CD4+ T cells. PD-1+ T helper 17 cells are the predominant CD4+ T cell subset expressing TGF-β. Coculture of PD-1+CD4+ T cells with human lung fibroblasts induced collagen-1 production. Strikingly, ex vivo PD-1 pathway blockade resulted in reductions in TGF-β and IL-17A expression from CD4+ T cells, with concomitant declines in collagen-1 production from fibroblasts. Molecular analysis demonstrated PD-1 regulation of the transcription factor STAT3 (signal transducer and activator of transcription 3). Chemical blockade of STAT3, using the inhibitor STATTIC, inhibited collagen-1 production. Both bleomycin administration to PD-1 null mice or use of antibody against programmed cell death ligand 1 (PD-L1) demonstrated significantly reduced fibrosis compared to controls. This work identifies a critical, previously unrecognized role for PD-1+CD4+ T cells in pulmonary fibrosis, supporting the use of readily available therapeutics that directly address interstitial lung disease pathophysiology.


Chest | 2001

Iatrogenic Paradoxical Air Embolism in Pulmonary Hypertension

Barry W. Holcomb; James E. Loyd; Benjamin F. Byrd; Terry T. Wilsdorf; Terri Casey-Cato; Wendi R. Mason; Ivan M. Robbins


American Journal of Respiratory and Critical Care Medicine | 2017

Genetic Evaluation and Testing of Patients and Families with Idiopathic Pulmonary Fibrosis

Jonathan A. Kropski; Lisa R. Young; Joy D. Cogan; Daphne B. Mitchell; Lisa Lancaster; John A. Worrell; Cheryl Markin; Liu N; Wendi R. Mason; Tasha E. Fingerlin; David A. Schwartz; William Lawson; Timothy S. Blackwell; Phillips Iii Ja; James E. Loyd


American Journal of Respiratory and Critical Care Medicine | 2015

Further Progress in Understanding Fibrosing Mediastinitis

Stephen B. Strock; Wendi R. Mason; James E. Loyd

Collaboration


Dive into the Wendi R. Mason's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tasha E. Fingerlin

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elissa Murphy

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge