Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wendy A. Wolf is active.

Publication


Featured researches published by Wendy A. Wolf.


BMC Medical Genomics | 2011

The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies.

Catherine A. McCarty; Rex L. Chisholm; Christopher G. Chute; Iftikhar J. Kullo; Gail P. Jarvik; Eric B. Larson; Rongling Li; Daniel R. Masys; Marylyn D. Ritchie; Dan M. Roden; Jeffery P. Struewing; Wendy A. Wolf

IntroductionThe eMERGE (electronic MEdical Records and GEnomics) Network is an NHGRI-supported consortium of five institutions to explore the utility of DNA repositories coupled to Electronic Medical Record (EMR) systems for advancing discovery in genome science. eMERGE also includes a special emphasis on the ethical, legal and social issues related to these endeavors.OrganizationThe five sites are supported by an Administrative Coordinating Center. Setting of network goals is initiated by working groups: (1) Genomics, (2) Informatics, and (3) Consent & Community Consultation, which also includes active participation by investigators outside the eMERGE funded sites, and (4) Return of Results Oversight Committee. The Steering Committee, comprised of site PIs and representatives and NHGRI staff, meet three times per year, once per year with the External Scientific Panel.Current progressThe primary site-specific phenotypes for which samples have undergone genome-wide association study (GWAS) genotyping are cataract and HDL, dementia, electrocardiographic QRS duration, peripheral arterial disease, and type 2 diabetes. A GWAS is also being undertaken for resistant hypertension in ≈2,000 additional samples identified across the network sites, to be added to data available for samples already genotyped. Funded by ARRA supplements, secondary phenotypes have been added at all sites to leverage the genotyping data, and hypothyroidism is being analyzed as a cross-network phenotype. Results are being posted in dbGaP. Other key eMERGE activities include evaluation of the issues associated with cross-site deployment of common algorithms to identify cases and controls in EMRs, data privacy of genomic and clinically-derived data, developing approaches for large-scale meta-analysis of GWAS data across five sites, and a community consultation and consent initiative at each site.Future activitiesPlans are underway to expand the network in diversity of populations and incorporation of GWAS findings into clinical care.SummaryBy combining advanced clinical informatics, genome science, and community consultation, eMERGE represents a first step in the development of data-driven approaches to incorporate genomic information into routine healthcare delivery.


Genetics in Medicine | 2012

Managing Incidental Findings and Research Results in Genomic Research Involving Biobanks and Archived Data Sets

Susan M. Wolf; Brittney Crock; Brian Van Ness; Frances Lawrenz; Jeffrey P. Kahn; Laura M. Beskow; Mildred K. Cho; Michael F. Christman; Robert C. Green; Ralph Hall; Judy Illes; Moira A. Keane; Bartha Maria Knoppers; Barbara A. Koenig; Isaac S. Kohane; Bonnie S. LeRoy; Karen J. Maschke; William McGeveran; Pilar N. Ossorio; Lisa S. Parker; Gloria M. Petersen; Henry S. Richardson; Joan Scott; Sharon F. Terry; Benjamin S. Wilfond; Wendy A. Wolf

Biobanks and archived data sets collecting samples and data have become crucial engines of genetic and genomic research. Unresolved, however, is what responsibilities biobanks should shoulder to manage incidental findings and individual research results of potential health, reproductive, or personal importance to individual contributors (using “biobank” here to refer both to collections of samples and collections of data). This article reports recommendations from a 2-year project funded by the National Institutes of Health. We analyze the responsibilities involved in managing the return of incidental findings and individual research results in a biobank research system (primary research or collection sites, the biobank itself, and secondary research sites). We suggest that biobanks shoulder significant responsibility for seeing that the biobank research system addresses the return question explicitly. When reidentification of individual contributors is possible, the biobank should work to enable the biobank research system to discharge four core responsibilities to (1) clarify the criteria for evaluating findings and the roster of returnable findings, (2) analyze a particular finding in relation to this, (3) reidentify the individual contributor, and (4) recontact the contributor to offer the finding. We suggest that findings that are analytically valid, reveal an established and substantial risk of a serious health condition, and are clinically actionable should generally be offered to consenting contributors. This article specifies 10 concrete recommendations, addressing new biobanks as well as those already in existence.Genet Med 2012:14(4):361–384


Journal of the American Medical Informatics Association | 2012

Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study

Abel N. Kho; M. Geoffrey Hayes; Laura J. Rasmussen-Torvik; Jennifer A. Pacheco; William K. Thompson; Loren L. Armstrong; Joshua C. Denny; Peggy L. Peissig; Aaron W. Miller; Wei Qi Wei; Suzette J. Bielinski; Christopher G. Chute; Cynthia L. Leibson; Gail P. Jarvik; David R. Crosslin; Christopher S. Carlson; Katherine M. Newton; Wendy A. Wolf; Rex L. Chisholm; William L. Lowe

OBJECTIVE Genome-wide association studies (GWAS) require high specificity and large numbers of subjects to identify genotype-phenotype correlations accurately. The aim of this study was to identify type 2 diabetes (T2D) cases and controls for a GWAS, using data captured through routine clinical care across five institutions using different electronic medical record (EMR) systems. MATERIALS AND METHODS An algorithm was developed to identify T2D cases and controls based on a combination of diagnoses, medications, and laboratory results. The performance of the algorithm was validated at three of the five participating institutions compared against clinician review. A GWAS was subsequently performed using cases and controls identified by the algorithm, with samples pooled across all five institutions. RESULTS The algorithm achieved 98% and 100% positive predictive values for the identification of diabetic cases and controls, respectively, as compared against clinician review. By standardizing and applying the algorithm across institutions, 3353 cases and 3352 controls were identified. Subsequent GWAS using data from five institutions replicated the TCF7L2 gene variant (rs7903146) previously associated with T2D. DISCUSSION By applying stringent criteria to EMR data collected through routine clinical care, cases and controls for a GWAS were identified that subsequently replicated a known genetic variant. The use of standard terminologies to define data elements enabled pooling of subjects and data across five different institutions to achieve the robust numbers required for GWAS. CONCLUSIONS An algorithm using commonly available data from five different EMR can accurately identify T2D cases and controls for genetic study across multiple institutions.


Public Health Genomics | 2010

Public and biobank participant attitudes toward genetic research participation and data sharing.

Amy A. Lemke; Wendy A. Wolf; J. Hebert-Beirne; Maureen E. Smith

Research assessing attitudes toward consent processes for high-throughput genomic-wide technologies and widespread sharing of data is limited. In order to develop a better understanding of stakeholder views toward these issues, this cross-sectional study assessed public and biorepository participant attitudes toward research participation and sharing of genetic research data. Forty-nine individuals participated in 6 focus groups; 28 in 3 public focus groups and 21 in 3 NUgene biorepository participant focus groups. In the public focus groups, 75% of participants were women, 75% had some college education or more, 46% were African-American and 29% were Hispanic. In the NUgene focus groups, 67% of participants were women, 95% had some college education or more, and the majority (76%) of participants was Caucasian. Five major themes were identified in the focus group data: (a) a wide spectrum of understanding of genetic research; (b) pros and cons of participation in genetic research; (c) influence of credibility and trust of the research institution; (d) concerns about sharing genetic research data and need for transparency in the Policy for Sharing of Data in National Institutes of Health-Supported or Conducted Genome-Wide Association Studies; (e) a need for more information and education about genetic research. In order to increase public understanding and address potential concerns about genetic research, future efforts should be aimed at involving the public in genetic research policy development and in identifying or developing appropriate educational strategies to meet the public’s needs.


Clinical Pharmacology & Therapeutics | 2014

Design and anticipated outcomes of the eMERGE-PGx project: a multicenter pilot for preemptive pharmacogenomics in electronic health record systems.

Laura J. Rasmussen-Torvik; Sarah Stallings; Adam S. Gordon; Berta Almoguera; Melissa A. Basford; Suzette J. Bielinski; Ariel Brautbar; Murray H. Brilliant; David Carrell; John J. Connolly; David R. Crosslin; Kimberly F. Doheny; Carlos J. Gallego; Omri Gottesman; Daniel Seung Kim; Kathleen A. Leppig; Rongling Li; Simon Lin; Shannon Manzi; Ana R. Mejia; Jennifer A. Pacheco; Vivian Pan; Jyotishman Pathak; Cassandra Perry; Josh F. Peterson; Cynthia A. Prows; James D. Ralston; Luke V. Rasmussen; Marylyn D. Ritchie; Senthilkumar Sadhasivam

We describe here the design and initial implementation of the eMERGE‐PGx project. eMERGE‐PGx, a partnership of the Electronic Medical Records and Genomics Network and the Pharmacogenomics Research Network, has three objectives: (i) to deploy PGRNseq, a next‐generation sequencing platform assessing sequence variation in 84 proposed pharmacogenes, in nearly 9,000 patients likely to be prescribed drugs of interest in a 1‐ to 3‐year time frame across several clinical sites; (ii) to integrate well‐established clinically validated pharmacogenetic genotypes into the electronic health record with associated clinical decision support and to assess process and clinical outcomes of implementation; and (iii) to develop a repository of pharmacogenetic variants of unknown significance linked to a repository of electronic health record–based clinical phenotype data for ongoing pharmacogenomics discovery. We describe site‐specific project implementation and anticipated products, including genetic variant and phenotype data repositories, novel variant association studies, clinical decision support modules, clinical and process outcomes, approaches to managing incidental findings, and patient and clinician education methods.


Journal of Cell Biology | 2002

A fluorescent resonant energy transfer–based biosensor reveals transient and regional myosin light chain kinase activation in lamella and cleavage furrows

Teng Leong Chew; Wendy A. Wolf; Patricia J. Gallagher; Fumio Matsumura; Rex L. Chisholm

Approaches with high spatial and temporal resolution are required to understand the regulation of nonmuscle myosin II in vivo. Using fluorescence resonance energy transfer we have produced a novel biosensor allowing simultaneous determination of myosin light chain kinase (MLCK) localization and its [Ca2+]4/calmodulin-binding state in living cells. We observe transient recruitment of diffuse MLCK to stress fibers and its in situ activation before contraction. MLCK is highly active in the lamella of migrating cells, but not at the retracting tail. This unexpected result highlights a potential role for MLCK-mediated myosin contractility in the lamella as a driving force for migration. During cytokinesis, MLCK was enriched at the spindle equator during late metaphase, and was maximally activated just before cleavage furrow constriction. As furrow contraction was completed, active MLCK was redistributed to the poles of the daughter cells. These results show MLCK is a myosin regulator in the lamella and contractile ring, and pinpoints sites where myosin function may be mediated by other kinases.


American Journal of Medical Genetics Part A | 2009

Assessing the understanding of biobank participants

Kelly E. Ormond; A.L. Cirino; I.B. Helenowski; Rex L. Chisholm; Wendy A. Wolf

Biobanks have been developed as a tool to better understand the genetic basis of disease by linking DNA samples to corresponding medical information. The broad scope of such projects presents a challenge to informed consent and participant understanding. To address this, 200 telephone interviews were conducted with participants in the NUgene Project, Northwestern Universitys biobank. Interviews included a modified version of the “quality of informed consent measure” (QuIC) and semi‐structured questions which were analyzed thematically for 109 of the interviews. The QuIC, originally applied to cancer clinical trials, objectively assessed some of the components of informed consent for a biobank, and interview questions provided rich data to assist in interpreting participant understanding. The best understood domains included: the nature of the study, benefit to future patients, and the voluntary nature of participation. Lower knowledge scores included: potential risks and discomforts, experimental nature of the research, procedures in the event of study‐related injury, and confidentiality issues. Qualitatively, confidentiality protections of the study were described as good by most (>50%). Although some cited concerns with employer (12%) or insurance discrimination (25%), most considered the risks to privacy low (25%) or none (∼60%). Only 10% of participants explicitly stated they had no expectation for personal benefit, and when asked whether they expected to be contacted with study results, respondents were split between having no expectation (39%), being hopeful for results (37%) and expecting to be contacted with results (12%). These findings are informative to those establishing and implementing biobanks, and to the IRBs reviewing such studies.


Genetics in Medicine | 2012

Return of individual research results from genome-wide association studies: experience of the Electronic Medical Records and Genomics (eMERGE) Network.

Stephanie M. Fullerton; Wendy A. Wolf; Ellen Wright Clayton; Dana C. Crawford; Joshua C. Denny; Philip Greenland; Barbara A. Koenig; Kathleen A. Leppig; Noralane M. Lindor; Catherine A. McCarty; Amy L. McGuire; Eugenia R. McPeek Hinz; Daniel B. Mirel; Erin M. Ramos; Marylyn D. Ritchie; Maureen E. Smith; Carol Waudby; Wylie Burke; Gail P. Jarvik

Purpose:Return of individual genetic results to research participants, including participants in archives and biorepositories, is receiving increased attention. However, few groups have deliberated on specific results or weighed deliberations against relevant local contextual factors.Methods:The Electronic Medical Records and Genomics (eMERGE) Network, which includes five biorepositories conducting genome-wide association studies, convened a return of results oversight committee to identify potentially returnable results. Network-wide deliberations were then brought to local constituencies for final decision making.Results:Defining results that should be considered for return required input from clinicians with relevant expertise and much deliberation. The return of results oversight committee identified two sex chromosomal anomalies, Klinefelter syndrome and Turner syndrome, as well as homozygosity for factor V Leiden, as findings that could warrant reporting. Views about returning findings of HFE gene mutations associated with hemochromatosis were mixed due to low penetrance. Review of electronic medical records suggested that most participants with detected abnormalities were unaware of these findings. Local considerations relevant to return varied and, to date, four sites have elected not to return findings (return was not possible at one site).Conclusion:The eMERGE experience reveals the complexity of return of results decision making and provides a potential deliberative model for adoption in other collaborative contexts.Genet Med 2012:14(4):424–431


Genome Research | 2011

Ethical and practical challenges of sharing data from genome-wide association studies: The eMERGE Consortium experience

Amy L. McGuire; Melissa A. Basford; Lynn G. Dressler; Stephanie M. Fullerton; Barbara A. Koenig; Rongling Li; Catherine A. McCarty; Erin M. Ramos; Maureen E. Smith; Carol P. Somkin; Carol Waudby; Wendy A. Wolf; Ellen Wright Clayton

In 2007, the National Human Genome Research Institute (NHGRI) established the Electronic MEdical Records and GEnomics (eMERGE) Consortium (www.gwas.net) to develop, disseminate, and apply approaches to research that combine DNA biorepositories with electronic medical record (EMR) systems for large-scale, high-throughput genetic research. One of the major ethical and administrative challenges for the eMERGE Consortium has been complying with existing data-sharing policies. This paper discusses the challenges of sharing genomic data linked to health information in the electronic medical record (EMR) and explores the issues as they relate to sharing both within a large consortium and in compliance with the National Institutes of Health (NIH) data-sharing policy. We use the eMERGE Consortium experience to explore data-sharing challenges from the perspective of multiple stakeholders (i.e., research participants, investigators, and research institutions), provide recommendations for researchers and institutions, and call for clearer guidance from the NIH regarding ethical implementation of its data-sharing policy.


Clinical Pharmacology & Therapeutics | 2016

Genetic variation among 82 pharmacogenes: The PGRNseq data from the eMERGE network

William S. Bush; David R. Crosslin; A. Owusu-Obeng; John R. Wallace; Berta Almoguera; Melissa A. Basford; Suzette J. Bielinski; David Carrell; John J. Connolly; Dana C. Crawford; Kimberly F. Doheny; Carlos J. Gallego; Adam S. Gordon; Brendan J. Keating; Jacqueline Kirby; Terrie Kitchner; Shannon Manzi; A. R. Mejia; Vivian Pan; Cassandra Perry; Josh F. Peterson; Cynthia A. Prows; James D. Ralston; Stuart A. Scott; Aaron Scrol; Maureen E. Smith; Sarah Stallings; T. Veldhuizen; Wendy A. Wolf; Simona Volpi

Genetic variation can affect drug response in multiple ways, although it remains unclear how rare genetic variants affect drug response. The electronic Medical Records and Genomics (eMERGE) Network, collaborating with the Pharmacogenomics Research Network, began eMERGE‐PGx, a targeted sequencing study to assess genetic variation in 82 pharmacogenes critical for implementation of “precision medicine.” The February 2015 eMERGE‐PGx data release includes sequence‐derived data from ∼5,000 clinical subjects. We present the variant frequency spectrum categorized by variant type, ancestry, and predicted function. We found 95.12% of genes have variants with a scaled Combined Annotation‐Dependent Depletion score above 20, and 96.19% of all samples had one or more Clinical Pharmacogenetics Implementation Consortium Level A actionable variants. These data highlight the distribution and scope of genetic variation in relevant pharmacogenes, identifying challenges associated with implementing clinical sequencing for drug treatment at a broader level, underscoring the importance for multifaceted research in the execution of precision medicine.

Collaboration


Dive into the Wendy A. Wolf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua C. Denny

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marylyn D. Ritchie

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Shannon Manzi

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gail P. Jarvik

University of Washington

View shared research outputs
Top Co-Authors

Avatar

John J. Connolly

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge