Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wendy Akmentin is active.

Publication


Featured researches published by Wendy Akmentin.


Journal of Cell Biology | 2002

Pincher, a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes

Yufang Shao; Wendy Akmentin; Juan José Toledo-Aral; Julie Rosenbaum; Gregorio Valdez; John B. Cabot; Brian S. Hilbush; Simon Halegoua

Acentral tenet of nerve growth factor (NGF) action that is poorly understood is its ability to mediate cytoplasmic signaling, through its receptor TrkA, that is initiated at the nerve terminal and conveyed to the soma. We identified an NGF-induced protein that we termed Pincher (pinocytic chaperone) that mediates endocytosis and trafficking of NGF and its receptor TrkA. In PC12 cells, overexpression of Pincher dramatically stimulated NGF-induced endocytosis of TrkA, unexpectedly at sites of clathrin-independent macropinocytosis within cell surface ruffles. Subsequently, a system of Pincher-containing tubules mediated the delivery of NGF/TrkA-containing vesicles to cytoplasmic accumulations. These vesicles selectively and persistently mediated TrkA-erk5 mitogen-activated protein kinase signaling. A dominant inhibitory mutant form of Pincher inhibited the NGF-induced endocytosis of TrkA, and selectively blocked TrkA-mediated cytoplasmic signaling of erk5, but not erk1/2, kinases. Our results indicate that Pincher mediates pinocytic endocytosis of functionally specialized NGF/TrkA endosomes with persistent signaling potential.


The Journal of Neuroscience | 2005

Pincher-Mediated Macroendocytosis Underlies Retrograde Signaling by Neurotrophin Receptors

Gregorio Valdez; Wendy Akmentin; Polyxeni Philippidou; Rejji Kuruvilla; David D. Ginty; Simon Halegoua

Retrograde signaling by neurotrophins is crucial for regulating neuronal phenotype and survival. The mechanism responsible for retrograde signaling has been elusive, because the molecular entities that propagate Trk receptor tyrosine kinase signals from the nerve terminal to the soma have not been defined. Here, we show that the membrane trafficking protein Pincher defines the primary pathway responsible for neurotrophin retrograde signaling in neurons. By both immunofluorescence confocal and immunoelectron microscopy, we find that Pincher mediates the formation of newly identified clathrin-independent macroendosomes for Trk receptors in soma, axons, and dendrites. Trk macroendosomes are derived from plasma membrane ruffles and subsequently processed to multivesicular bodies. Pincher similarly mediates macroendocytosis for NGF (TrkA) and BDNF (TrkB) in both peripheral (sympathetic) and central (hippocampal) neurons. A unique feature of Pincher-Trk endosomes is refractoriness to lysosomal degradation, which ensures persistent signaling through a critical effector of retrograde survival signaling, Erk5 (extracellular signal-regulated kinase 5). Using sympathetic neurons grown in chamber cultures, we find that block of Pincher function, which prevents Trk macroendosome formation, eliminates retrogradely signaled neuronal survival. Pincher is the first distinguishing molecular component of a novel mechanistic pathway for endosomal signaling in neurons.


Nature Neuroscience | 2011

Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming

Josefin Snellman; Bhupesh Mehta; Norbert Babai; Theodore M. Bartoletti; Wendy Akmentin; Adam Francis; Gary Matthews; Wallace B. Thoreson; David Zenisek

In vision, balance and hearing, sensory receptor cells translate sensory stimuli into electrical signals whose amplitude is graded with stimulus intensity. The output synapses of these sensory neurons must provide fast signaling to follow rapidly changing stimuli while also transmitting graded information covering a wide range of stimulus intensity and must be able to sustain this signaling for long time periods. To meet these demands, specialized machinery for transmitter release, the synaptic ribbon, has evolved at the synaptic outputs of these neurons. We found that acute disruption of synaptic ribbons by photodamage to the ribbon markedly reduced both sustained and transient components of neurotransmitter release in mouse bipolar cells and salamander cones without affecting the ultrastructure of the ribbon or its ability to localize synaptic vesicles to the active zone. Our results indicate that ribbons mediate both slow and fast signaling at sensory synapses and support an additional role for the synaptic ribbon in priming vesicles for exocytosis at active zones.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Trk-signaling endosomes are generated by Rac-dependent macroendocytosis

Gregorio Valdez; Polyxeni Philippidou; Julie Rosenbaum; Wendy Akmentin; Yufang Shao; Simon Halegoua

Why neurotrophins and their Trk receptors promote neuronal differentiation and survival whereas receptor tyrosine kinases for other growth factors, such as EGF, do not, has been a long-standing question in neurobiology. We provide evidence that one difference lies in the selective ability of Trk to generate long-lived signaling endosomes. We show that Trk endocytosis is distinguished from the classical clathrin-based endocytosis of EGF receptor (EGFR). Although Trk and EGFR each stimulate membrane ruffling, only Trk undergoes both selective and specific macroendocytosis at ruffles, which uniquely requires the Rho-GTPase, Rac, and the trafficking protein, Pincher. This process leads to Trk-signaling endosomes, which are immature multivesicular bodies that retain Rab5. In contrast, EGFR endosomes rapidly exchange Rab5 for Rab7, thereby transiting into late-endosomes/lysosomes for degradation. Sustained endosomal signaling by Trk does not reflect intrinsic differences between Trk and EGFR, because each elicits long-term Erk-kinase activation from the cell surface. Thus, a population of stable Trk endosomes, formed by specialized macroendocytosis in neurons, provides a privileged endosome-based system for propagation of signals to the nucleus.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Trk retrograde signaling requires persistent, Pincher-directed endosomes

Polyxeni Philippidou; Gregorio Valdez; Wendy Akmentin; William J. Bowers; Howard J. Federoff; Simon Halegoua

Target-derived neurotrophins use retrogradely transported Trk-signaling endosomes to promote survival and neuronal phenotype at the soma. Despite their critical role in neurotrophin signaling, the nature and molecular composition of these endosomes remain largely unknown, the result of an inability to specifically identify the retrograde signaling entity. Using EGF-bound nanoparticles and chimeric, EGF-binding TrkB receptors, we elucidate Trk-endosomal events involving their formation, processing, retrograde transport, and somal signaling in sympathetic neurons. By comparing retrograde endosomal signaling by Trk to the related but poorly neuromodulatory EGF-receptor, we find that Trk and EGF-receptor endosomes are formed and processed by distinct mechanisms. Surprisingly, Trk and EGF-receptors are both retrogradely transported to the soma in multivesicular bodies. However, only the Trk-multivesicular bodies rely on Pincher-dependent macroendocytosis and processing. Retrograde signaling through Pincher-generated Trk-multivesicular bodies is distinctively refractory to signal termination by lysosomal processing, resulting in sustained somal signaling and neuronal gene expression.


Molecular and Cellular Neuroscience | 2010

Trk activation in the secretory pathway promotes Golgi fragmentation.

Leslayann C. Schecterson; Mark P. Hudson; Mabel Ko; Polyxeni Philippidou; Wendy Akmentin; Jesse C. Wiley; Elise Rosenblum; Moses V. Chao; Simon Halegoua; Mark Bothwell

Activation of nascent receptor tyrosine kinases within the secretory pathway has been reported, yet the consequences of intracellular activation are largely unexplored. We report that overexpression of the Trk neurotrophin receptors causes accumulation of autoactivated receptors in the ER-Golgi intermediate compartment. Autoactivated receptors exhibit inhibited Golgi-mediated processing and they inhibit Golgi-mediated processing of other co-expressed transmembrane proteins, apparently by inducing fragmentation of the Golgi apparatus. Signaling from G protein-coupled receptors is known to induce Trk transactivation. Transactivation of nascent TrkB in hippocampal neurons resulting from exposure to the neuropeptide PACAP caused Golgi fragmentation, whereas BDNF-dependent activation of TrkB did not. TrkB-mediated Golgi fragmentation employs a MEK-dependent signaling pathway resembling that implicated in regulation of Golgi fragmentation in mitotic cells. Neuronal Golgi fragments, in the form of dendritically localized Golgi outposts, are important determinants of dendritic growth and branching. The capacity of transactivated TrkB to enhance neuronal Golgi fragmentation may represent a novel mechanism regulating neural plasticity.


The Journal of Neuroscience | 2013

Stabilization of Spontaneous Neurotransmitter Release at Ribbon Synapses by Ribbon-Specific Subtypes of Complexin

Thirumalini Vaithianathan; George Zanazzi; Diane Henry; Wendy Akmentin; Gary Matthews

Ribbon synapses of tonically releasing sensory neurons must provide a large pool of releasable vesicles for sustained release, while minimizing spontaneous release in the absence of stimulation. Complexins are presynaptic proteins that may accomplish this dual task at conventional synapses by interacting with the molecular machinery of synaptic vesicle fusion at the active zone to retard spontaneous vesicle exocytosis yet facilitate release evoked by depolarization. However, ribbon synapses of photoreceptor cells and bipolar neurons in the retina express distinct complexin subtypes, perhaps reflecting the special requirements of these synapses for tonic release. To investigate the role of ribbon-specific complexins in transmitter release, we combined presynaptic voltage clamp, fluorescence imaging, electron microscopy, and behavioral assays of photoreceptive function in zebrafish. Acute interference with complexin function using a peptide derived from the SNARE-binding domain increased spontaneous synaptic vesicle fusion at ribbon synapses of retinal bipolar neurons without affecting release triggered by depolarization. Knockdown of complexin by injection of an antisense morpholino into zebrafish embryos prevented photoreceptor-driven migration of pigment in skin melanophores and caused the pigment distribution to remain in the dark-adapted state even when embryos were exposed to light. This suggests that loss of complexin function elevated spontaneous release in illuminated photoreceptors sufficiently to mimic the higher release rate normally associated with darkness, thus interfering with visual signaling. We conclude that visual system-specific complexins are required for proper illumination-dependent modulation of the rate of neurotransmitter release at visual system ribbon synapses.


The Journal of Comparative Neurology | 2000

Ultrastructural localization of the binding fragment of tetanus toxin in putative ?-aminobutyric acidergic terminals in the intermediolateral cell column: A potential basis for sympathetic dysfunction in generalized tetanus

Michael A. Ligorio; Wendy Akmentin; Frances Gallery; John B. Cabot

Tetanus toxin (TeTx) causes sympathetic hyperactivity, a major cause of mortality in generalized tetanus, apparently by obstructing the inhibition of sympathetic preganglionic neurons (SPNs). Neuroanatomic tracing and immunohistochemistry were used to investigate whether axon terminals in the intermediolateral cell column (IML) that synapse on SPNs and use the inhibitory neurotransmitter γ‐aminobutyric acid (GABA) may be infected transsynaptically with TeTx. The binding fragment of TeTx (TTC; an atoxic surrogate of TeTx) and the cholera toxin B subunit (CTB; a retrograde tracer) were injected into the rat superior cervical ganglion and, over 16–48 hours, were transported to the ipsilateral IML in the caudal half of the last cervical and first three thoracic spinal cord segments. With light microscopy, diffuse CTB immunolabeling extended throughout SPN perikarya and dendrites. Punctate TTC and GABA immunolabeling were accumulated densely in the neuropil between and surrounding SPN processes. With electron microscopy, 54% of the axon terminals in the IML (n = 1,337 terminals) were TTC immunolabeled (TTC+), and 25% contained putative neurotransmitter levels of GABA immunolabeling (GABA+). On average, GABA+ terminals had a 76% chance of also being TTC+ and a 62% greater chance of being TTC+ than GABA− terminals (P < 0.000001). Axon terminals were just as likely to be TTC+ and/or GABA+ regardless of whether the dendrites they synapsed on were large (>1 μM) or small in cross‐sectional area or were labeled retrogradely. Sympathetic hyperactivity in tetanus may involve 1) retrograde and transsynaptic transport of TeTx by SPNs and 2) at least in part, an infection of GABAergic terminals in the IML. J. Comp. Neurol. 419:471–484, 2000.


The Journal of Neuroscience | 2015

Functional Roles of Complexin in Neurotransmitter Release at Ribbon Synapses of Mouse Retinal Bipolar Neurons

Thirumalini Vaithianathan; Diane Henry; Wendy Akmentin; Gary Matthews

Ribbon synapses of photoreceptor cells and bipolar neurons in the retina signal graded changes in light intensity via sustained release of neurotransmitter. One molecular specialization of retinal ribbon synapses is the expression of complexin protein subtypes Cplx3 and Cplx4, whereas conventional synapses express Cplx1 and Cplx2. Because complexins bind to the molecular machinery for synaptic vesicle fusion (the SNARE complex) and modulate transmitter release at conventional synapses, we examined the roles of ribbon-specific complexin in regulating release at ribbon synapses of ON bipolar neurons from mouse retina. To interfere acutely with the interaction of native complexins with the SNARE complex, a peptide consisting of the highly conserved SNARE-binding domain of Cplx3 was introduced via a whole-cell patch pipette placed directly on the synaptic terminal, and vesicle fusion was monitored using capacitance measurements and FM-dye destaining. The inhibitory peptide, but not control peptides, increased spontaneous synaptic vesicle fusion, partially depleted reserve synaptic vesicles, and reduced fusion triggered by opening voltage-gated calcium channels under voltage clamp, without affecting the number of synaptic vesicles associated with ribbons, as revealed by electron microscopy of recorded terminals. The results are consistent with a dual role for ribbon-specific complexin, acting as a brake on the SNARE complex to prevent spontaneous fusion in the absence of calcium influx, while at the same time facilitating release evoked by depolarization.


eLife | 2016

Nanoscale dynamics of synaptic vesicle trafficking and fusion at the presynaptic active zone

Thirumalini Vaithianathan; Diane Henry; Wendy Akmentin; Gary Matthews

The cytomatrix at the active zone (CAZ) is a macromolecular complex that facilitates the supply of release-ready synaptic vesicles to support neurotransmitter release at synapses. To reveal the dynamics of this supply process in living synapses, we used super-resolution imaging to track single vesicles at voltage-clamped presynaptic terminals of retinal bipolar neurons, whose CAZ contains a specialized structure—the synaptic ribbon—that supports both fast, transient and slow, sustained modes of transmission. We find that the synaptic ribbon serves a dual function as a conduit for diffusion of synaptic vesicles and a platform for vesicles to fuse distal to the plasma membrane itself, via compound fusion. The combination of these functions allows the ribbon-type CAZ to achieve the continuous transmitter release required by synapses of neurons that carry tonic, graded visual signals in the retina. DOI: http://dx.doi.org/10.7554/eLife.13245.001

Collaboration


Dive into the Wendy Akmentin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane Henry

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yufang Shao

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge