Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wendy B. Hyland is active.

Publication


Featured researches published by Wendy B. Hyland.


International Journal of Radiation Oncology Biology Physics | 2011

Cell-Specific Radiosensitization by Gold Nanoparticles at Megavoltage Radiation Energies

Suneil Jain; Jonathan A. Coulter; A.R. Hounsell; Karl T. Butterworth; Stephen J. McMahon; Wendy B. Hyland; Mark F. Muir; Glenn R. Dickson; Kevin Prise; Frederick Currell; Joe M. O’Sullivan; David Hirst

PURPOSE Gold nanoparticles (GNPs) have been shown to cause sensitization with kilovoltage (kV) radiation. Differences in the absorption coefficient between gold and soft tissue, as a function of photon energy, predict that maximum enhancement should occur in the kilovoltage (kV) range, with almost no enhancement at megavoltage (MV) energies. Recent studies have shown that GNPs are not biologically inert, causing oxidative stress and even cell death, suggesting a possible biological mechanism for sensitization. The purpose of this study was to assess GNP radiosensitization at clinically relevant MV X-ray energies. METHODS AND MATERIALS Cellular uptake, intracellular localization, and cytotoxicity of GNPs were assessed in normal L132, prostate cancer DU145, and breast cancer MDA-MB-231 cells. Radiosensitization was measured by clonogenic survival at kV and MV photon energies and MV electron energies. Intracellular DNA double-strand break (DSB) induction and DNA repair were determined and GNP chemosensitization was assessed using the radiomimetic agent bleomycin. RESULTS GNP uptake occurred in all cell lines and was greatest in MDA-MB-231 cells with nanoparticles accumulating in cytoplasmic lysosomes. In MDA-MB-231 cells, radiation sensitizer enhancement ratios (SERs) of 1.41, 1.29, and 1.16 were achieved using 160 kVp, 6 MV, and 15 MV X-ray energies, respectively. No significant effect was observed in L132 or DU145 cells at kV or MV energies (SER 0.97-1.08). GNP exposure did not increase radiation-induced DSB formation or inhibit DNA repair; however, GNP chemosensitization was observed in MDA-MB-231 cells treated with bleomycin (SER 1.38). CONCLUSIONS We have demonstrated radiosensitization in MDA-MB-231 cells at MV X-ray energies. The sensitization was cell-specific with comparable effects at kV and MV energies, no increase in DSB formation, and GNP chemopotentiation with bleomycin, suggesting a possible biological mechanism of radiosensitization.


Scientific Reports | 2011

Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles

Stephen J. McMahon; Wendy B. Hyland; Mark F. Muir; Jonathan A. Coulter; Suneil Jain; Karl T. Butterworth; Giuseppe Schettino; Glenn R. Dickson; A.R. Hounsell; Joe M. O'Sullivan; Kevin Prise; David Hirst; Frederick Currell

Gold nanoparticles (GNPs) are being proposed as contrast agents to enhance X-ray imaging and radiotherapy, seeking to take advantage of the increased X-ray absorption of gold compared to soft tissue. However, there is a great discrepancy between physically predicted increases in X-ray energy deposition and experimentally observed increases in cell killing. In this work, we present the first calculations which take into account the structure of energy deposition in the nanoscale vicinity of GNPs and relate this to biological outcomes, and show for the first time good agreement with experimentally observed cell killing by the combination of X-rays and GNPs. These results are not only relevant to radiotherapy, but also have implications for applications of heavy atom nanoparticles in biological settings or where human exposure is possible because the localised energy deposition high-lighted by these results may cause complex DNA damage, leading to mutation and carcinogenesis.


Applied Physics Letters | 2011

Cold atmospheric pressure plasma jet interactions with plasmid DNA

Deborah O'Connell; L. J. Cox; Wendy B. Hyland; Stephen J. McMahon; Stephan Reuter; W. G. Graham; Timo Gans; Frederick Currell

The effect of a cold (<40 °C) radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. Gel electrophoresis was used to analyze the DNA forms post-treatment. The experimental data are fitted to a rate equation model that allows for quantitative determination of the rates of single and double strand break formation. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks.


Radiotherapy and Oncology | 2011

Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy

Stephen J. McMahon; Wendy B. Hyland; Mark F. Muir; Jonathan A. Coulter; Suneil Jain; Karl T. Butterworth; Giuseppe Schettino; Glenn R. Dickson; A.R. Hounsell; Joe M. O’Sullivan; Kevin Prise; David Hirst; Frederick Currell

BACKGROUND AND PURPOSE The addition of gold nanoparticles (GNPs) to tumours leads to an increase in dose due to their high density and energy absorption coefficient, making it a potential radiosensitiser. However, experiments have observed radiosensitisations significantly larger than the increase in dose alone, including at megavoltage energies where golds relative energy absorption is lowest. This work investigates whether GNPs create dose inhomogeneities on a sub-cellular scale which combine with non-linear dose dependence of cell survival to be the source of radiosensitisation at megavoltage energies. MATERIALS AND METHODS Monte Carlo simulations were carried out to calculate dose in the vicinity of a single GNP on the nanoscale. The effect of this nanoscale dose distribution was then modelled for MDA-MB-231 cells exposed to 2 nm GNPs, and compared to experimental results. RESULTS Dramatic dose inhomogeneities occur around GNPs exposed to megavoltage radiation. When analysed using the Local Effect Model, these inhomogeneities lead to significant radiosensitisation, in agreement with experimental results. CONCLUSIONS This work suggests that GNP radiosensitisation is driven by inhomogeneities in dose on the nanoscale, rather than changes in dose over the entire cell, which may contribute to the similar radiosensitisation observed in megavoltage and kilovoltage experiments. The short range of these inhomogeneities and the variation in enhancement in different cells suggests sub-cellular localisation is important in determining GNP radiosensitisation.


International Journal of Nanomedicine | 2012

Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles

Jonathan A. Coulter; Suneil Jain; Karl T. Butterworth; Laura E. Taggart; Glenn R. Dickson; Stephen J. McMahon; Wendy B. Hyland; Mark F. Muir; Coleman Trainor; A.R. Hounsell; Joe M. O'Sullivan; Giuseppe Schettino; Frederick Currell; David Hirst; Kevin Prise

Background This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data. Methods We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species. Results Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential. Conclusion Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies.


Scientific Reports | 2016

Imaging and radiation effects of gold nanoparticles in tumour cells

Harold McQuaid; Mark F. Muir; Laura E. Taggart; Stephen J. McMahon; Jonathan A. Coulter; Wendy B. Hyland; Suneil Jain; Karl T. Butterworth; Giuseppe Schettino; Kevin Prise; David Hirst; Stanley W. Botchway; Frederick Currell

Gold nanoparticle radiosensitization represents a novel technique in enhancement of ionising radiation dose and its effect on biological systems. Variation between theoretical predictions and experimental measurement is significant enough that the mechanism leading to an increase in cell killing and DNA damage is still not clear. We present the first experimental results that take into account both the measured biodistribution of gold nanoparticles at the cellular level and the range of the product electrons responsible for energy deposition. Combining synchrotron-generated monoenergetic X-rays, intracellular gold particle imaging and DNA damage assays, has enabled a DNA damage model to be generated that includes the production of intermediate electrons. We can therefore show for the first time good agreement between the prediction of biological outcomes from both the Local Effect Model and a DNA damage model with experimentally observed cell killing and DNA damage induction via the combination of X-rays and GNPs. However, the requirement of two distinct models as indicated by this mechanistic study, one for short-term DNA damage and another for cell survival, indicates that, at least for nanoparticle enhancement, it is not safe to equate the lethal lesions invoked in the local effect model with DNA damage events.


Clinical Oncology | 2013

Radiosensitising Nanoparticles as Novel Cancer Therapeutics — Pipe Dream or Realistic Prospect?

Jonathan A. Coulter; Wendy B. Hyland; James R. Nicol; Frederick Currell

The field of high atomic number nanoparticle radiosensitising agents is reviewed. After a brief discussion of the new mode of physicochemical action implied by irradiation of high atomic number nanoparticles embedded in biological systems, a series of exemplars are discussed. Silver-, gadolinium- and gold-based nanoparticles are discussed in order of increasing atomic number with functionalisation strategies being outlined. In vitro and in vivo evidence for radio-enhancement and the mechanisms attributed to the increased biological effect are discussed.


Radiotherapy and Oncology | 2014

Gold nanoparticle cellular uptake, toxicity and radiosensitisation in hypoxic conditions.

Suneil Jain; Jonathan A. Coulter; Karl T. Butterworth; A.R. Hounsell; Stephen J. McMahon; Wendy B. Hyland; Mark F. Muir; Glenn R. Dickson; Kevin Prise; Frederick Currell; David Hirst; Joe M. O’Sullivan

BACKGROUND AND PURPOSE Gold nanoparticles (GNPs) are novel agents that have been shown to cause radiosensitisation in vitro and in vivo. Tumour hypoxia is associated with radiation resistance and reduced survival in cancer patients. The interaction of GNPs with cells in hypoxia is explored. MATERIALS AND METHODS GNP uptake, localization, toxicity and radiosensitisation were assessed in vitro under oxic and hypoxic conditions. RESULTS GNP cellular uptake was significantly lower under hypoxic than oxic conditions. A significant reduction in cell proliferation in hypoxic MDA-MB-231 breast cancer cells exposed to GNPs was observed. In these cells significant radiosensitisation occurred in normoxia and moderate hypoxia. However, in near anoxia no significant sensitisation occurred. CONCLUSIONS GNP uptake occurred in hypoxic conditions, causing radiosensitisation in moderate, but not extreme hypoxia in a breast cancer cell line. These findings may be important for the development of GNPs for cancer therapy.


THE 17TH INTERNATIONAL CONFERENCE ON ATOMIC PROCESSES IN PLASMAS (ICAPIP) | 2012

Cold atmospheric pressure plasma jets: Interaction with plasmid DNA and tailored electron heating using dual-frequency excitation

Kari Niemi; Colm O'Neill; L.J. Cox; Jochen Waskoenig; Wendy B. Hyland; Stephen J. McMahon; Stephan Reuter; F J Currell; W. G. Graham; Deborah O'Connell; Timo Gans

Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations.


British Journal of Radiology | 2014

Investigation into the radiobiological consequences of pre-treatment verification imaging with megavoltage X-rays in radiotherapy

Wendy B. Hyland; Stephen J. McMahon; Karl T. Butterworth; Aidan J Cole; Raymond King; Kelly Redmond; Kevin Prise; A.R. Hounsell; Conor K. McGarry

OBJECTIVE The aim of this study was to investigate the effect of pre-treatment verification imaging with megavoltage X-rays on cancer and normal cell survival in vitro and to compare the findings with theoretically modelled data. Since the dose received from pre-treatment imaging can be significant, the incorporation of this dose at the planning stage of treatment has been suggested. METHODS The impact of imaging dose incorporation on cell survival was investigated by clonogenic assay of irradiated DU-145 prostate cancer, H460 non-small-cell lung cancer and AGO-1522b normal tissue fibroblast cells. Clinically relevant imaging-to-treatment times of 7.5 and 15 min were chosen for this study. The theoretical magnitude of the loss of radiobiological efficacy due to sublethal damage repair was investigated using the Lea-Catcheside dose protraction factor model. RESULTS For the cell lines investigated, the experimental data showed that imaging dose incorporation had no significant impact on cell survival. These findings were in close agreement with theoretical results. CONCLUSION For the conditions investigated, the results suggest that allowance for the imaging dose at the planning stage of treatment should not adversely affect treatment efficacy. ADVANCES IN KNOWLEDGE There is a paucity of data in the literature on imaging effects in radiotherapy. This article presents a systematic study of imaging dose effects on cancer and normal cell survival, providing both theoretical and experimental evidence for clinically relevant imaging doses and imaging-to-treatment times. The data provide a firm foundation for further study into this highly relevant area of research.

Collaboration


Dive into the Wendy B. Hyland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederick Currell

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Prise

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suneil Jain

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

A.R. Hounsell

Belfast Health and Social Care Trust

View shared research outputs
Top Co-Authors

Avatar

Mark F. Muir

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

David Hirst

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Glenn R. Dickson

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge