Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wendy D. Schober is active.

Publication


Featured researches published by Wendy D. Schober.


Leukemia | 2003

Regulation and targeting of antiapoptotic XIAP in acute myeloid leukemia

Bing Z. Carter; Michele Milella; Twee Tsao; Teresa McQueen; Wendy D. Schober; W. Hu; N. M. Dean; Linda S. Steelman; James A. McCubrey; Michael Andreeff

XIAP is a member of the inhibitors-of-apoptosis family of proteins, which inhibit caspases and block cell death, with prognostic importance in AML. Here we demonstrate that cytokines regulate the expression of XIAP in leukemic cell lines and primary AML blasts. Inhibition of phosphatidylinositol-3 kinase (PI3K) with LY294002 and of the mitogen-activated protein kinase (MAPK) cascade by PD98059 resulted in decreased XIAP levels (34±8.7 and 23±5.7%, respectively). We then generated OCI-AML3 cells with constitutively phosphorylated Akt (p473-Akt) by retroviral gene transfer. Neither these nor Akt inhibitor-treated OCI-AML3 cells showed changes in XIAP levels, suggesting that XIAP expression is regulated by PI3K downstream effectors other than Akt. The induction of XIAP expression by cytokines through PI3K/MAPK pathways is consistent with its role in cell survival. Exposure of leukemic cells to chemotherapeutic agents decreased XIAP protein levels by caspase-dependent XIAP cleavage. Targeting XIAP by XIAP antisense oligonucleotide resulted in downregulation of XIAP, activation of caspases and cell death, and sensitized HL-60 cells to Ara-C. Our results suggest that XIAP is regulated by cytokines through PI3K, and to a lesser degree through MAPK pathways. Selective downregulation of XIAP expression might be of therapeutic benefit to leukemic patients.


Cancer Research | 2007

The novel triterpenoid C-28 methyl ester of 2-cyano-3, 12-dioxoolen-1, 9-dien-28-oic acid inhibits metastatic murine breast tumor growth through inactivation of STAT3 signaling

Xiaoyang Ling; Marina Konopleva; Zhihong Zeng; Vivian Ruvolo; L. Clifton Stephens; Wendy D. Schober; Teresa McQueen; Martin Dietrich; Timothy Madden; Michael Andreeff

We and others have reported that C-28 methyl ester of 2-cyano-3, 12-dioxoolen-1, 9-dien-28-oic acid (CDDO-Me) effectively inhibits the growth of multiple cancer cell types. Our previous studies indicated that prolonged CDDO-Me treatment inactivated extracellular signal-regulated kinase signaling in acute myelogenous leukemia cells. Whether treatment with CDDO-Me has an earlier effect on other proteins that are important for either signal transduction or oncogenesis is unknown. Constitutively activated signal transducer and activator of transcription 3 (STAT3) is frequently found in human breast cancer samples. Constitutively activated STAT3 was shown to up-regulate c-Myc in several types of cancer and has a feedback effect on Src and Akt. To examine the effects of CDDO-Me on STAT3 signaling in breast cancer, we used the murine 4T1 breast tumor model, which is largely resistant to chemotherapy. In vitro, after treatment of 4T1 cells with 500 nmol/L CDDO-Me for 2 h, we found (a) inactivation of STAT3, (b) inactivation of Src and Akt, (c) 4-fold reduction of c-Myc mRNA levels, (d) accumulation of cells in G(2)-M cell cycle phase, (e) abrogation of invasive growth of 4T1 cells, and (f) lack of apoptosis induction. In in vivo studies, CDDO-Me completely eliminated 4T1 breast cancer growth and lung metastases induced by 4T1 cells in mice when treatment started 1 day after tumor implantation and significantly inhibited tumor growth when started after 5 days. In vivo studies also indicated that splenic mature dendritic cells were restored after CDDO-Me treatment. In summary, these data suggest that CDDO-Me may have therapeutic potential in breast cancer therapy, in part, through inactivation of STAT3.


Blood | 2008

Triptolide sensitizes AML cells to TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5

Bing Z. Carter; Duncan H. Mak; Wendy D. Schober; Martin Dietrich; Clemencia Pinilla; Lyubomir T. Vassilev; John C. Reed; Michael Andreeff

Acute myeloid leukemia (AML) cells are relatively resistant to tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL). We previously reported that triptolide, a potent anticancer agent from a Chinese herb, decreases XIAP in leukemic cells. We evaluated the combination of triptolide and TRAIL and found synergistic promotion of apoptosis in AML cells. XIAP-overexpressing U937 cells (U937XIAP) were more resistant to TRAIL than U937neo cells, and inhibition of XIAP with the small-molecule inhibitor 1396-11 enhanced TRAIL-induced apoptosis, implying XIAP as a resistance factor in AML. Furthermore, triptolide increased DR5 levels in OCI-AML3, while the DR5 increase was blunted in p53-knockdown OCI-AML3 and p53-mutated U937 cells, confirming a role for p53 in the regulation of DR5. In support of this finding, disruption of MDM2-p53 binding with subsequent increase in p53 levels by nutlin3a increased DR5 levels and sensitized OCI-AML3 cells to TRAIL. The combination of 1396-11 plus nutlin3a plus TRAIL was more effective than either the 1396-11 and TRAIL or nutlin3a and TRAIL combinations in OCI-AML3 cells, further supporting the role of triptolide as a sensitizer to TRAIL-induced apoptosis in part by independent modulation of XIAP expression and p53 signaling. Thus, the combination of triptolide and TRAIL may provide a novel strategy for treating AML by overcoming critical mechanisms of apoptosis resistance.


Blood | 2014

Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance

Rodrigo Jacamo; Yuling Chen; Zhiqiang Wang; Wencai Ma; Mingjun Zhang; Erika L. Spaeth; Yunfei Wang; Venkata Lokesh Battula; Po Yee Mak; Schallmoser K; Peter P. Ruvolo; Wendy D. Schober; Elizabeth J. Shpall; Martin Nguyen; Strunk D; Carlos E. Bueso-Ramos; Sergej Konoplev; Richard Eric Davis; Marina Konopleva; Michael Andreeff

Leukemia cells are protected from chemotherapy-induced apoptosis by their interactions with bone marrow mesenchymal stromal cells (BM-MSCs). Yet the underlying mechanisms associated with this protective effect remain unclear. Genome-wide gene expression profiling of BM-MSCs revealed that coculture with leukemia cells upregulated the transcription of genes associated with nuclear factor (NF)-κB signaling. Moreover, primary BM-MSCs from leukemia patients expressed NF-κB target genes at higher levels than their normal BM-MSC counterparts. The blockade of NF-κB activation via chemical agents or the overexpression of the mutant form of inhibitor κB-α (IκBα) in BM-MSCs markedly reduced the stromal-mediated drug resistance in leukemia cells in vitro and in vivo. In particular, our unique in vivo model of human leukemia BM microenvironment illustrated a direct link between NF-κB activation and stromal-associated chemoprotection. Mechanistic in vitro studies revealed that the interaction between vascular cell adhesion molecule 1 (VCAM-1) and very late antigen-4 (VLA-4) played an integral role in the activation of NF-κB in the stromal and tumor cell compartments. Together, these results suggest that reciprocal NF-κB activation in BM-MSCs and leukemia cells is essential for promoting chemoresistance in the transformed cells, and targeting NF-κB or VLA-4/VCAM-1 signaling could be a clinically relevant mechanism to overcome stroma-mediated chemoresistance in BM-resident leukemia cells.


Cell Cycle | 2006

Concomitant inhibition of MDM2 and Bcl-2 protein function synergistically induce mitochondrial apoptosis in AML

Kensuke Kojima; Marina Konopleva; Ismael Samudio; Wendy D. Schober; William G. Bornmann; Michael Andreeff

Disruption of Mdm2-p53 interaction activates p53 signaling, disrupts the balance ofantiapoptotic and proapoptotic Bcl-2 family proteins and induces apoptosis in acutemyeloid leukemia (AML). Overexpression of Bcl-2 may inhibit this effect. Thus,functional inactivation of antiapoptotic Bcl-2 proteins may enhance apoptogenic effects ofMdm2 inhibition. We here investigate the potential therapeutic utility of combinedtargeting of Mdm2 by Nutlin-3a and Bcl-2 by ABT-737, recently developed inhibitors ofprotein-protein interactions. Nutlin-3a and ABT-737 induced Bax conformational changeand mitochondrial apoptosis in AML cells in a strikingly synergistic fashion. Nutlin-3ainduced p53-mediated apoptosis predominantly in S and G2/M cells, while cells in G1 were protected through induction of p21. In contrast, ABT-737 induced apoptosis predominantly in G1 , the cell cycle phase with the lowest Bcl-2 protein levels and Bcl-2/Bax ratios. In addition, Bcl-2 phosphorylation on Ser70 was absent in G1 but detectable in G2/M, thus lower Bcl-2 levels and absence of Bcl-2 phosphorylation appeared to facilitate ABT-737-induced apoptosis of G1 cells. The complementary effects of Nutlin-3a and ABT-737 in different cell cycle phases could, in part, account for their synergistic activity. Our data suggest that combined targeting of Mdm2 and Bcl-2 proteins could offer considerable therapeutic promise in AML.


Cancer Research | 2010

Blockade of Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Kinase and Murine Double Minute Synergistically Induces Apoptosis in Acute Myeloid Leukemia via BH3-Only Proteins Puma and Bim

Weiguo Zhang; Marina Konopleva; Jared K. Burks; Karen C. Dywer; Wendy D. Schober; Jer Yen Yang; Teresa McQueen; Mien Chie Hung; Michael Andreeff

Molecular aberrations of the Ras/Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK and/or Murine double minute (MDM2)/p53 signaling pathways have been reported in 80% and 50% of primary acute myeloid leukemia (AML) samples and confer poor outcome. In this study, antileukemic effects of combined MEK inhibition by AZD6244 and nongenotoxic p53 activation by MDM2 antagonist Nutlin-3a were investigated. Simultaneous blockade of MEK and MDM2 signaling by AZD6244 and Nutlin-3a triggered synergistic proapoptotic responses in AML cell lines [combination index (CI) = 0.06 +/- 0.03 and 0.43 +/- 0.03 in OCI/AML3 and MOLM13 cells, respectively] and in primary AML cells (CI = 0.52 +/- 0.01). Mechanistically, the combination upregulated levels of BH3-only proteins Puma and Bim, in part via transcriptional upregulation of the FOXO3a transcription factor. Suppression of Puma and Bim by short interfering RNA rescued OCI/AML3 cells from AZD/Nutlin-induced apoptosis. These results strongly indicate the therapeutic potential of combined MEK/MDM2 blockade in AML and implicate Puma and Bim as major regulators of AML cell survival.


Cell Cycle | 2003

Targeting Survivin expression induces cell proliferation defect and subsequent cell death involving mitochondrial pathway in myeloid leukemic cells.

Bing Z. Carter; Rui Yu Wang; Wendy D. Schober; Michele Milella; David D. Chism; Michael Andreeff

No abstract available.


Cancer Biology & Therapy | 2012

Regulation of HIF-1α signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone marrow microenvironment

Olga Frolova; Ismael Samudio; Juliana Benito; Rodrigo Jacamo; Steven M. Kornblau; Ana Markovic; Wendy D. Schober; Hongbo Lu; Yi Hua Qiu; Daniela Buglio; Teresa McQueen; Sherry Pierce; Elizabeth J. Shpall; Sergej Konoplev; Deborah A. Thomas; Hagop M. Kantarjian; Richard B. Lock; Michael Andreeff; Marina Konopleva

Overcoming resistance to chemotherapy is the main therapeutic challenge in the treatment of acute lymphocytic leukemia (ALL). Interactions between leukemia cells and the microenvironment promote leukemia cell survival and confer resistance to chemotherapy. Hypoxia is an integral component of bone marrow (BM) microenvironment. Hypoxia-inducible factor-1α (HIF-1), a key regulator of the cellular response to hypoxia, regulates cell growth and metabolic adaptation to hypoxia. HIF-1α expression, analyzed by Reverse Phase Protein Arrays in 92 specimens from newly diagnosed patients with pre-B-ALL, had a negative prognostic impact on survival (p = 0.0025). Inhibition of HIF-1α expression by locked mRNA antagonist (LNA) promoted chemosensitivity under hypoxic conditions, while pharmacological or genetic stabilization of HIF-1α under normoxia inhibited cell growth and reduced apoptosis induction by chemotherapeutic agents. Co-culture of pre-B ALL or REH cells with BM-derived mesenchymal stem cells (MSC) under hypoxia resulted in further induction of HIF-1α protein and acquisition of the glycolytic phenotype, in part via stroma-induced AKT/mTOR signaling. mTOR blockade with everolimus reduced HIF-1α expression, diminished glucose uptake and glycolytic rate and partially restored the chemosensitivity of ALL cells under hypoxia/stroma co-cultures. Hence, mTOR inhibition or blockade of HIF-1α-mediated signaling may play an important role in chemosensitization of ALL cells under hypoxic conditions of the BM microenvironment.


Blood | 2010

Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML.

Bing Z. Carter; Duncan H. Mak; Wendy D. Schober; Erich Koller; Clemencia Pinilla; Lyubomir T. Vassilev; John C. Reed; Michael Andreeff

Activation of p53 by murine double minute (MDM2) antagonist nutlin-3a or inhibition of X-linked inhibitor of apoptosis (XIAP) induces apoptosis in acute myeloid leukemia (AML) cells. We demonstrate that concomitant inhibition of MDM2 by nutlin-3a and of XIAP by small molecule antagonists synergistically induced apoptosis in p53 wild-type OCI-AML3 and Molm13 cells. Knockdown of p53 by shRNA blunted the synergy, and down-regulation of XIAP by antisense oligonucleotide (ASO) enhanced nutlin-3a-induced apoptosis, suggesting that the synergy was mediated by p53 activation and XIAP inhibition. This is supported by data showing that inhibition of both MDM2 and XIAP by their respective ASOs induced significantly more cell death than either ASO alone. Importantly, p53 activation and XIAP inhibition enhanced apoptosis in blasts from patients with primary AML, even when the cells were protected by stromal cells. Mechanistic studies demonstrated that XIAP inhibition potentiates p53-induced apoptosis by decreasing p53-induced p21 and that p53 activation enhances XIAP inhibition-induced cell death by promoting mitochondrial release of second mitochondria-derived activator of caspases (SMAC) and by inducing the expression of caspase-6. Because both XIAP and p53 are presently being targeted in ongoing clinical trials in leukemia, the combination strategy holds promise for expedited translation into the clinic.


Cytometry Part A | 2015

Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells.

Lina Han; Peng Qiu; Zhihong Zeng; Jeffrey L. Jorgensen; Duncan H. Mak; Jared K. Burks; Wendy D. Schober; Teresa McQueen; Jorge Cortes; Scott D. Tanner; Gail J. Roboz; Hagop M. Kantarjian; Steven M. Kornblau; Monica L. Guzman; Michael Andreeff; Marina Konopleva

Understanding the unique phenotypes and complex signaling pathways of leukemia stem cells (LSCs) will provide insights and druggable targets that can be used to eradicate acute myeloid leukemia (AML). Current work on AML LSCs is limited by the number of parameters that conventional flow cytometry (FCM) can analyze because of cell autofluorescence and fluorescent dye spectral overlap. Single‐cell mass cytometry (CyTOF) substitutes rare earth elements for fluorophores to label antibodies, which allows measurements of up to 120 parameters in single cells without correction for spectral overlap. The aim of this study was the evaluation of intracellular signaling in antigen‐defined stem/progenitor cell subsets in primary AML. CyTOF and conventional FCM yielded comparable results on LSC phenotypes defined by CD45, CD34, CD38, CD123, and CD99. Intracellular phosphoprotein responses to ex vivo cell signaling inhibitors and cytokine stimulation were assessed in myeloid leukemia cell lines and one primary AML sample. CyTOF and conventional FCM results were confirmed by western blotting. In the primary AML sample, we investigated the cell responses to ex vivo stimulation with stem cell factor and BEZ235‐induced inhibition of PI3K and identified activation patterns in multiple PI3K downstream signaling pathways including p‐4EBP1, p‐AKT, and p‐S6, particularly in CD34+ subsets. We evaluated multiple signaling pathways in antigen‐defined subpopulations in primary AML cells with FLT3‐ITD mutations. The data demonstrated the heterogeneity of cell phenotype distribution and distinct patterns of signaling activation across AML samples and between AML and normal samples. The mTOR targets p‐4EBP1 and p‐S6 were exclusively found in FLT3‐ITD stem/progenitor cells, but not in their normal counterparts, suggesting both as novel targets in FLT3 mutated AML. Our data suggest that CyTOF can identify functional signaling pathways in antigen‐defined subpopulations in primary AML, which may provide a rationale for designing therapeutics targeting LSC‐enriched cell populations.

Collaboration


Dive into the Wendy D. Schober's collaboration.

Top Co-Authors

Avatar

Michael Andreeff

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Marina Konopleva

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa McQueen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Duncan H. Mak

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hagop M. Kantarjian

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rui-Yu Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Vivian Ruvolo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jorge Cortes

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Peter P. Ruvolo

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge