Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wendy Dean is active.

Publication


Featured researches published by Wendy Dean.


Current Biology | 2000

Active demethylation of the paternal genome in the mouse zygote.

Joachim Oswald; Sabine Engemann; Natasha Lane; W Mayer; Alexander Olek; Reinald Fundele; Wendy Dean; Wolf Reik; Jörn Walter

DNA methylation is essential for the control of a number of biological mechanisms in mammals [1]. Mammalian development is accompanied by two major waves of genome-wide demethylation and remethylation: one during germ-cell development and the other after fertilisation [2] [3] [4] [5] [6] [7]. Most previous studies have suggested that the genome-wide demethylation observed after fertilisation occurs passively, that is, by the lack of maintenance methylation following DNA replication and cell division [6] [7], although one other study has reported that replication-independent demethylation may also occur during early embryogenesis [8]. Here, we report that genes that are highly methylated in sperm are rapidly demethylated in the zygote only hours after fertilisation, before the first round of DNA replication commences. By contrast, the oocyte-derived maternal alleles are unaffected by this reprogramming. They either remain methylated after fertilisation or become further methylated de novo. These results provide the first direct evidence for active demethylation of single-copy genes in the mammalian zygote and, moreover, reveal a striking asymmetry in epigenetic methylation reprogramming. Whereas paternally (sperm)-derived sequences are exposed to putative active demethylases in the oocyte cytoplasm, maternally (oocyte)-derived sequences are protected from this reaction. These results, whose generality is supported by findings of Mayer et al. [9], have important implications for the establishment of biparental genetic totipotency after fertilisation, the establishment and maintenance of genomic imprinting, and the reprogramming of somatic cells during cloning.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos

Wendy Dean; Fátima Santos; Miodrag Stojkovic; Valeri Zakhartchenko; Jörn Walter; Eckhard Wolf; Wolf Reik

Mouse embryos undergo genome-wide methylation reprogramming by demethylation in early preimplantation development, followed by remethylation thereafter. Here we show that genome-wide reprogramming is conserved in several mammalian species and ask whether it also occurs in embryos cloned with the use of highly methylated somatic donor nuclei. Normal bovine, rat, and pig zygotes showed a demethylated paternal genome, suggesting active demethylation. In bovine embryos methylation was further reduced during cleavage up to the eight-cell stage, and this reduction in methylation was followed by de novo methylation by the 16-cell stage. In cloned one-cell embryos there was a reduction in methylation consistent with active demethylation, but no further demethylation occurred subsequently. Instead, de novo methylation and nuclear reorganization of methylation patterns resembling those of differentiated cells occurred precociously in many cloned embryos. Cloned, but not normal, morulae had highly methylated nuclei in all blastomeres that resembled those of the fibroblast donor cells. Our study shows that epigenetic reprogramming occurs aberrantly in most cloned embryos; incomplete reprogramming may contribute to the low efficiency of cloning.


Nature | 2002

Placental-specific IGF-II is a major modulator of placental and fetal growth

Miguel Constância; Myriam Hemberger; Jennifer Hughes; Wendy Dean; Anne Ferguson-Smith; Reinald Fundele; Francesca Stewart; Gavin Kelsey; Abigail Fowden; C.P. Sibley; Wolf Reik

Imprinted genes in mammals are expressed from only one of the parental chromosomes, and are crucial for placental development and fetal growth. The insulin-like growth factor II gene (Igf2) is paternally expressed in the fetus and placenta. Here we show that deletion from the Igf2 gene of a transcript (P0) specifically expressed in the labyrinthine trophoblast of the placenta leads to reduced growth of the placenta, followed several days later by fetal growth restriction. The fetal to placental weight ratio is thus increased in the absence of the P0 transcript. We show that passive permeability for nutrients of the mutant placenta is decreased, but that secondary active placental amino acid transport is initially upregulated, compensating for the decrease in passive permeability. Later the compensation fails and fetal growth restriction ensues. Our study provides experimental evidence for imprinted gene action in the placenta that directly controls the supply of maternal nutrients to the fetus, and supports the genetic conflict theory of imprinting. We propose that the Igf2 gene, and perhaps other imprinted genes, control both the placental supply of, and the genetic demand for, maternal nutrients to the mammalian fetus.


Nature | 2010

Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by Aid deficiency

Christian Popp; Wendy Dean; Suhua Feng; Shawn J. Cokus; Simon Andrews; Matteo Pellegrini; Steven E. Jacobsen; Wolf Reik

Epigenetic reprogramming including demethylation of DNA occurs in mammalian primordial germ cells (PGCs) and in early embryos, and is important for the erasure of imprints and epimutations, and the return to pluripotency. The extent of this reprogramming and its molecular mechanisms are poorly understood. We previously showed that the cytidine deaminases AID and APOBEC1 can deaminate 5-methylcytosine in vitro and in Escherichia coli, and in the mouse are expressed in tissues in which demethylation occurs. Here we profiled DNA methylation throughout the genome by unbiased bisulphite next generation sequencing in wild-type and AID-deficient mouse PGCs at embryonic day (E)13.5. Wild-type PGCs revealed marked genome-wide erasure of methylation to a level below that of methylation deficient (Np95-/-, also called Uhrf1-/-) embryonic stem cells, with female PGCs being less methylated than male ones. By contrast, AID-deficient PGCs were up to three times more methylated than wild-type ones; this substantial difference occurred throughout the genome, with introns, intergenic regions and transposons being relatively more methylated than exons. Relative hypermethylation in AID-deficient PGCs was confirmed by analysis of individual loci in the genome. Our results reveal that erasure of DNA methylation in the germ line is a global process, hence limiting the potential for transgenerational epigenetic inheritance. AID deficiency interferes with genome-wide erasure of DNA methylation patterns, indicating that AID has a critical function in epigenetic reprogramming and potentially in restricting the inheritance of epimutations in mammals.


Nature | 2013

Single-cell Hi-C reveals cell-to-cell variability in chromosome structure

Takashi Nagano; Yaniv Lubling; Tim J. Stevens; Stefan Schoenfelder; Eitan Yaffe; Wendy Dean; Ernest D. Laue; Amos Tanay; Peter Fraser

Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture (3C) assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single-cell Hi-C, combined with genome-wide statistical analysis and structural modelling of single-copy X chromosomes, to show that individual chromosomes maintain domain organization at the megabase scale, but show variable cell-to-cell chromosome structures at larger scales. Despite this structural stochasticity, localization of active gene domains to boundaries of chromosome territories is a hallmark of chromosomal conformation. Single-cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organization underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns.


Biology of Reproduction | 2001

Culture of Preimplantation Mouse Embryos Affects Fetal Development and the Expression of Imprinted Genes

Sanjeev Khosla; Wendy Dean; David Brown; Wolf Reik; Robert Feil

Abstract Culture of preimplantation mammalian embryos and cells can influence their subsequent growth and differentiation. Previously, we reported that culture of mouse embryonic stem cells is associated with deregulation of genomic imprinting and affects the potential for these cells to develop into normal fetuses. The purpose of our current study was to determine whether culture of preimplantation mouse embryos in a chemically defined medium (M16) with or without fetal calf serum (FCS) can affect their subsequent development and imprinted gene expression. Only one third of the blastocysts that had been cultured from two-cell embryos in M16 medium complemented with FCS developed into viable Day 14 fetuses after transfer into recipients. These M16 + FCS fetuses were reduced in weight as compared with controls and M16 fetuses and had decreased expression of the imprinted H19 and insulin-like growth factor 2 genes associated with a gain of DNA methylation at an imprinting control region upstream of H19. They also displayed increased expression of the imprinted gene Grb10. The growth factor receptor binding gene Grb7, in contrast, was strongly reduced in its expression in most of the M16 + FCS fetuses. No alterations were detected for the imprinted gene Mest. Preimplantation culture in the presence of serum can influence the regulation of multiple growth-related imprinted genes, thus leading to aberrant fetal growth and development.


Current Biology | 2003

Epigenetic Marking Correlates with Developmental Potential in Cloned Bovine Preimplantation Embryos

Fátima Santos; Valeri Zakhartchenko; Miodrag Stojkovic; Antoine H.F.M. Peters; Thomas Jenuwein; Eckhard Wolf; Wolf Reik; Wendy Dean

During differentiation, somatic nuclei acquire highly specialized DNA and chromatin modifications, which are thought to result in cellular memory of the differentiated state. Upon somatic nuclear transfer into oocytes, the donor nucleus may have to undergo reprogramming of these epigenetic marks in order to achieve totipotency. This may involve changes in epigenetic features similar to those that occur in normal embryos during early development. However, there is accumulating evidence that epigenetic reprogramming is severely deficient in cloned embryos. Several reports reveal inefficient demethylation and inappropriate reestablishment of DNA methylation in quantitative and qualitative patterns on somatic nuclear transfer. Here we examine histone H3 lysine 9 (H3-K9) methylation and acetylation in normal embryos and in those created by somatic nuclear transfer. We find that H3-K9 methylation is reprogrammed in parallel with DNA methylation in normal embryos. However, the majority of cloned embryos exhibit H3-K9 hypermethylation associated with DNA hypermethylation, suggesting a genome-wide failure of reprogramming. Strikingly, the precise epigenotype in cloned embryos depends on the donor cell type, and the proportion of embryos with normal epigenotypes correlates closely with the proportion developing to the blastocyst stage. These results suggest a mechanistic link between DNA and histone methylation in the mammalian embryo and reveal an association between epigenetic marks and developmental potential of cloned embryos.


Molecular Cell | 2012

The Dynamics of Genome-wide DNA Methylation Reprogramming in Mouse Primordial Germ Cells

Stefanie Seisenberger; Simon Andrews; Felix Krueger; Julia Arand; Joern Walter; Fátima Santos; Christian Popp; Bernard Thienpont; Wendy Dean; Wolf Reik

Summary Genome-wide DNA methylation reprogramming occurs in mouse primordial germ cells (PGCs) and preimplantation embryos, but the precise dynamics and biological outcomes are largely unknown. We have carried out whole-genome bisulfite sequencing (BS-Seq) and RNA-Seq across key stages from E6.5 epiblast to E16.5 PGCs. Global loss of methylation takes place during PGC expansion and migration with evidence for passive demethylation, but sequences that carry long-term epigenetic memory (imprints, CpG islands on the X chromosome, germline-specific genes) only become demethylated upon entry of PGCs into the gonads. The transcriptional profile of PGCs is tightly controlled despite global hypomethylation, with transient expression of the pluripotency network, suggesting that reprogramming and pluripotency are inextricably linked. Our results provide a framework for the understanding of the epigenetic ground state of pluripotency in the germline.


Nature Genetics | 2004

Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation.

Annabelle Lewis; Kohzoh Mitsuya; David Umlauf; Paul Smith; Wendy Dean; Joern Walter; Michael J. Higgins; Robert Feil; Wolf Reik

Imprinted genes are expressed from only one of the parental chromosomes and are marked epigenetically by DNA methylation and histone modifications. The imprinting center 2 (IC2) on mouse distal chromosome 7 is flanked by several paternally repressed genes, with the more distant ones imprinted exclusively in the placenta. We found that most of these genes lack parent-specific DNA methylation, and genetic ablation of methylation does not lead to loss of their imprinting in the trophoblast (placenta). The silent paternal alleles of the genes are marked in the trophoblast by repressive histone modifications (dimethylation at Lys9 of histone H3 and trimethylation at Lys27 of histone H3), which are disrupted when IC2 is deleted, leading to reactivation of the paternal alleles. Thus, repressive histone methylation is recruited by IC2 (potentially through a noncoding antisense RNA) to the paternal chromosome in a region of at least 700 kb and maintains imprinting in this cluster in the placenta, independently of DNA methylation. We propose that an evolutionarily older imprinting mechanism limited to extraembryonic tissues was based on histone modifications, and that this mechanism was subsequently made more stable for use in embryonic lineages by the recruitment of DNA methylation.


Nature Reviews Molecular Cell Biology | 2009

Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal

Myriam Hemberger; Wendy Dean; Wolf Reik

Cells of the early mammalian embryo, including pluripotent embryonic stem (ES) cells and primordial germ cells (PGCs), are epigenetically dynamic and heterogeneous. During early development, this heterogeneity of epigenetic states is associated with stochastic expression of lineage-determining transcription factors that establish an intimate crosstalk with epigenetic modifiers. Lineage-specific epigenetic modification of crucial transcription factor loci (for example, methylation of the Elf5 promoter) leads to the restriction of transcriptional circuits and the fixation of lineage fate. The intersection of major epigenetic reprogramming and programming events in the early embryo creates plasticity followed by commitment to the principal cell lineages of the early conceptus.

Collaboration


Dive into the Wendy Dean's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Feil

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge