Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wendy Fellows-Mayle is active.

Publication


Featured researches published by Wendy Fellows-Mayle.


Cancer Research | 2011

COX-2 Blockade Suppresses Gliomagenesis by Inhibiting Myeloid-Derived Suppressor Cells

Mitsugu Fujita; Gary Kohanbash; Wendy Fellows-Mayle; Ronald L. Hamilton; Yoshihiro Komohara; Stacy A. Decker; John R. Ohlfest; Hideho Okada

Epidemiologic studies have highlighted associations between the regular use of nonsteroidal anti-inflammatory drugs (NSAID) and reduced glioma risks in humans. Most NSAIDs function as COX-2 inhibitors that prevent production of prostaglandin E₂ (PGE₂). Because PGE₂ induces expansion of myeloid-derived suppressor cells (MDSC), we hypothesized that COX-2 blockade would suppress gliomagenesis by inhibiting MDSC development and accumulation in the tumor microenvironment (TME). In mouse models of glioma, treatment with the COX-2 inhibitors acetylsalicylic acid (ASA) or celecoxib inhibited systemic PGE₂ production and delayed glioma development. ASA treatment also reduced the MDSC-attracting chemokine CCL2 (C-C motif ligand 2) in the TME along with numbers of CD11b(+)Ly6G(hi)Ly6C(lo) granulocytic MDSCs in both the bone marrow and the TME. In support of this evidence that COX-2 blockade blocked systemic development of MDSCs and their CCL2-mediated accumulation in the TME, there were defects in these processes in glioma-bearing Cox2-deficient and Ccl2-deficient mice. Conversely, these mice or ASA-treated wild-type mice displayed enhanced expression of CXCL10 (C-X-C motif chemokine 10) and infiltration of cytotoxic T lymphocytes (CTL) in the TME, consistent with a relief of MDSC-mediated immunosuppression. Antibody-mediated depletion of MDSCs delayed glioma growth in association with an increase in CXCL10 and CTLs in the TME, underscoring a critical role for MDSCs in glioma development. Finally, Cxcl10-deficient mice exhibited reduced CTL infiltration of tumors, establishing that CXCL10 limited this pathway of immunosuppression. Taken together, our findings show that the COX-2 pathway promotes gliomagenesis by directly supporting systemic development of MDSCs and their accumulation in the TME, where they limit CTL infiltration.


Journal of Translational Medicine | 2007

Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models

Xinmei Zhu; Fumihiko Nishimura; Kotaro Sasaki; Mitsugu Fujita; Jill E. Dusak; Junichi Eguchi; Wendy Fellows-Mayle; Walter J. Storkus; Paul R. Walker; Andres M. Salazar; Hideho Okada

BackgroundToll-like receptor (TLR)3 ligands serve as natural inducers of pro-inflammatory cytokines capable of promoting Type-1 adaptive immunity, and TLR3 is abundantly expressed by cells within the central nervous system (CNS). To improve the efficacy of vaccine strategies directed against CNS tumors, we evaluated whether administration of a TLR3 ligand, polyinosinic-polycytidylic (poly-IC) stabilized with poly-lysine and carboxymethylcellulose (poly-ICLC) would enhance the anti-CNS tumor effectiveness of tumor peptide-based vaccinations.MethodsC57BL/6 mice bearing syngeneic CNS GL261 glioma or M05 melanoma received subcutaneous (s.c.) vaccinations with synthetic peptides encoding CTL epitopes- mEphA2 (671–679), hgp100 (25–33) and mTRP-2 (180–188) for GL261, or ovalbumin (OVA: 257–264) for M05. The mice also received intramuscular (i.m.) injections with poly-ICLC.ResultsThe combination of subcutaneous (s.c.) peptide-based vaccination and i.m. poly-ICLC administration promoted systemic induction of antigen (Ag)-specific Type-1 CTLs expressing very late activation antigen (VLA)-4, which confers efficient CNS-tumor homing of vaccine-induced CTLs based on experiments with monoclonal antibody (mAb)-mediated blockade of VLA-4. In addition, the combination treatment allowed expression of IFN-γ by CNS tumor-infiltrating CTLs, and improved the survival of tumor bearing mice in the absence of detectable autoimmunity.ConclusionThese data suggest that poly-ICLC, which has been previously evaluated in clinical trials, can be effectively combined with tumor Ag-specific vaccine strategies, thereby providing a greater index of therapeutic efficacy.


Cancer Gene Therapy | 2005

Epidermal growth factor receptor-transfected bone marrow stromal cells exhibit enhanced migratory response and therapeutic potential against murine brain tumors

Hidemitsu Sato; Naruo Kuwashima; Tsukasa Sakaida; Manabu Hatano; Jill E. Dusak; Wendy Fellows-Mayle; Glenn D. Papworth; Simon C. Watkins; Andrea Gambotto; Ian F. Pollack; Hideho Okada

We have created a novel cellular vehicle for gene therapy of malignant gliomas by transfection of murine bone marrow stroma cells (MSCs) with a cDNA encoding epidermal growth factor receptor (EGFR). These cells (EGFR-MSCs) demonstrate enhanced migratory responses toward glioma-conditioned media in comparison to primary MSCs in vitro. Enhanced migration of EGFR-MSC was at least partially dependent on EGF-EGFR, PI3-, MAP kinase kinase, and MAP kinases, protein kinase C, and actin polymerization. Unlike primary MSCs, EGFR-MSCs were resistant to FasL-mediated cytotoxicity and were capable of stimulating allogeneic mixed lymphocyte reaction, suggesting EGFR-MSCs possess suitable characteristics as vehicles for brain tumor immuno-gene therapy. Following injection at various sites, including the contralateral hemisphere in the brain of syngeneic mice, EGFR-MSCs were able to migrate toward GL261 gliomas or B16 melanoma in vivo. Finally, intratumoral injection with EGFR-MSC adenovirally engineered to secrete interferon-α to intracranial GL261 resulted in significantly prolonged survival in comparison to controls. These data indicate that EGFR-MSCs may serve as attractive vehicles for infiltrating brain malignancies such as malignant gliomas.


International Journal of Cancer | 2009

Identification of ATP Citrate Lyase as a Positive Regulator of Glycolytic Function in Glioblastomas

Marie E. Beckner; Wendy Fellows-Mayle; Zhe Zhang; Naomi R. Agostino; Jeffrey A. Kant; Billy W. Day; Ian F. Pollack

Glioblastomas, the most malignant type of glioma, are more glycolytic than normal brain tissue. Robust migration of glioblastoma cells has been previously demonstrated under glycolytic conditions and their pseudopodia contain increased glycolytic and decreased mitochondrial enzymes. Glycolysis is suppressed by metabolic acids, including citric acid which is excluded from mitochondria during hypoxia. We postulated that glioma cells maintain glycolysis by regulating metabolic acids, especially in their pseudopodia. The enzyme that breaks down cytosolic citric acid is ATP citrate lyase (ACLY). Our identification of increased ACLY in pseudopodia of U87 glioblastoma cells on 1D gels and immunoblots prompted investigation of ACLY gene expression in gliomas for survival data and correlation with expression of ENO1, that encodes enolase 1. Queries of the NIHs REMBRANDT brain tumor database based on Affymetrix data indicated that decreased survival correlated with increased gene expression of ACLY in gliomas. Queries of gliomas and glioblastomas found an association of upregulated ACLY and ENO1 expression by chi square for all probe sets (reporters) combined and correlation for numbers of probe sets indicating shared upregulation of these genes. Real‐time quantitative PCR confirmed correlation between ACLY and ENO1 in 21 glioblastomas (p < 0.001). Inhibition of ACLY with hydroxycitrate suppressed (p < 0.05) in vitro glioblastoma cell migration, clonogenicity and brain invasion under glycolytic conditions and enhanced the suppressive effects of a Met inhibitor on cell migration. In summary, gene expression data, proteomics and functional assays support ACLY as a positive regulator of glycolysis in glioblastomas.


Childs Nervous System | 1998

A rabbit model of human familial, nonsyndromic unicoronal suture synostosis. II. Intracranial contents, intracranial volume, and intracranial pressure

Mark P. Mooney; Michael I. Siegel; Annie M. Burrows; Timothy D. Smith; H. Wolfgang Losken; Jason J. Dechant; Gregory F. Cooper; Wendy Fellows-Mayle; M. Rusen Kapucu; L. Ozlem Kapucu

This two-part study reviews data from a recently developed colony of New Zealand white rabbits with familial, nonsyndromic unilateral coronal suture synostosis, and this second part presents neuropathological findings and age-related changes in intracranial volume (ICV) and intracranial pressure (ICP) in 106 normal rabbits and 56 craniosynostotic rabbits from this colony. Brain morphology and anteroposterior length were described in 44 rabbit fetuses and perinates (27 normal; 17 synostosed). Middle meningeal artery patterns were qualitatively assessed from 2-D PCC MRI VENC scans and endocranial tracings from 15, 126-day-old rabbits (8 normal, 7 rabbits with unicoronal synostosis). Brain metabolism was evaluated by assessing 18F-FDG uptake with high-resolution PET scanning in 7, 25-day-old rabbits (3 normal, 4 with unicoronal or bicoronal synostosis). Intracranial contents and ICV were assessed using 3-D CT scanning of the skulls of 30 rabbits (20 normal,10 with unicoronal synostosis) at 42 and 126 days of age. Serial ICP data were collected from 66 rabbits (49 normal; 17 with unicoronal synostosis) at 25 and 42 days of age. ICP was assessed in the epidural space using a Codman NeuroMonitor microsensor transducer. Results revealed that cerebral cortex morphology was similar between normal and synostosed fetuses around the time of synostosis. Significantly (P<0.05) decreased A-P cerebral hemisphere growth rates and asymmetrical cortical remodeling were noted with increasing age in synostotic rabbits. In addition, rabbits with unicoronal suture synostosis exhibited asymmetrical middle meningeal artery patterns, decreased and asymmetrical brain metabolism, a “beaten-copper” intracranial appearance, significantly (P<0.05) decreased ICV, and significantly (P<0.01) elevated ICP compared with normal control rabbits. The advantages and disadvantages of these rabbits as a model for human familial, nonsyndromic unicoronal suture synostosis are discussed, especially in light of recent clinical neuropathological, ICV, and ICP findings recorded in human craniosynostotic studies.


Journal of Immunology | 2005

Delivery of Dendritic Cells Engineered to Secrete IFN-α into Central Nervous System Tumors Enhances the Efficacy of Peripheral Tumor Cell Vaccines: Dependence on Apoptotic Pathways

Naruo Kuwashima; Fumihiko Nishimura; Junichi Eguchi; Hidemitsu Sato; Manabu Hatano; Takahiko Tsugawa; Tsukasa Sakaida; Jill E. Dusak; Wendy Fellows-Mayle; Glenn D. Papworth; Simon C. Watkins; Andrea Gambotto; Ian F. Pollack; Walter J. Storkus; Hideho Okada

We tested whether modulation of the CNS-tumor microenvironment by delivery of IFN-α-transduced dendritic cells (DCs: DC-IFN-α) would enhance the therapeutic efficacy of peripheral vaccinations with cytokine-gene transduced tumor cells. Mice bearing intracranial GL261 glioma or MCA205 sarcoma received peripheral immunizations with corresponding irradiated tumor cells engineered to express IL-4 or GM-CSFs, respectively, as well as intratumoral delivery of DC-IFN-α. This regimen prolonged survival of the animals and induced tumor-specific CTLs that expressed TRAIL, which in concert with perforin and Fas ligand (FasL) was involved in the tumor-specific CTL activity of these cells. The in vivo antitumor activity associated with this approach was abrogated by administration of neutralizing mAbs against TRAIL or FasL and was not observed in perforin−/−, IFN-γ−/−, or FasL−/− mice. Transduction of the tumor cells with antiapoptotic protein cellular FLIP rendered the gene-modified cells resistant to TRAIL- or FasL-mediated apoptosis and to CTL killing activity in vitro. Furthermore, the combination therapeutic regimen was ineffective in an intracranial cellular FLIP-transduced MCA205 brain tumor model. These results suggest that the combination of intratumoral delivery of DC-IFN-α and peripheral immunization with cytokine-gene transduced tumor cells may be an effective therapy for brain tumors that are sensitive to apoptotic signaling pathways.


Molecular Therapy | 2003

Treatment of rat gliosarcoma brain tumors by HSV-based multigene therapy combined with radiosurgery

Ajay Niranjan; Darren Wolfe; Masakazu Tamura; M. Karina Soares; David M. Krisky; L. Dade Lunsford; Songhui Li; Wendy Fellows-Mayle; Neal A. DeLuca; Justus B. Cohen; Joseph C. Glorioso

Our laboratory has employed replication-defective herpes simplex virus type 1 gene transfer vectors for treatment of animal models of human malignant glioblastoma. The base vectors were defective for the immediate early (IE) genes ICP4, ICP27, and ICP22 but expressed the IE gene ICP0, which can arrest tumor cell division, and an IE thymidine kinase (alpha-tk) gene construct that mediates suicide gene therapy (SGT) in the presence of ganciclovir (GCV). Previously, we reported that SGT using ICP0/alpha-tk vectors in nude mouse models of glioblastoma was improved by coexpression of the gap-junction-forming protein connexin43 (Cx43) or human tumor necrosis factor alpha (TNF alpha). We also showed that further gains in therapeutic outcome could be achieved by combining TNF alpha-enhanced SGT with gamma-knife radiosurgery (GKR). To expand these observations, we have first repeated these studies in immunocompetent rats with brain tumors derived from implanted 9L gliosarcoma cells and second compared the most efficient vector from this study with a new recombinant vector, NUREL-C2, which expressed both TNF alpha and Cx43 along with ICP0 and alpha-tk. Results from the first part indicated that our ICP0/alpha-tk/TNF alpha vector in combination with GKR provides an effective therapy although this treatment was not statistically better than GKR combined with the ICP0/alpha-tk/Cx43 vector. Our observations in the second part suggested that NUREL-C2 may be more effective than the ICP0/alpha-tk/TNF alpha vector in combination treatments with GCV (P = 0.08) or GCV plus GKR (P = 0.10). GKR significantly enhanced the efficacy of NUREL-C2/GCV treatment (P = 0.02) as well as other virus/GCV treatments (P < or = 0.05). Conversely, the efficacy of GKR was significantly improved by both the ICP0/alpha-tk/TNF alpha vector and NUREL-C2 in combination with GCV (P = 0.02 and P < 0.01, respectively). Together these results indicate that NUREL-C2 may be an attractive candidate for Phase I gene-therapy safety studies in patients with recurrent malignant glioblastoma.


Cancer Research | 2004

Delivery of Interferon-α Transfected Dendritic Cells into Central Nervous System Tumors Enhances the Antitumor Efficacy of Peripheral Peptide-Based Vaccines

Hideho Okada; Takahiko Tsugawa; Hidemitsu Sato; Naruo Kuwashima; Andrea Gambotto; Kaori Okada; Jill E. Dusak; Wendy Fellows-Mayle; Glenn D. Papworth; Simon Watkins; William H. Chambers; Douglas M. Potter; Walter J. Storkus; Ian F. Pollack

We evaluated the effects, on immunity and survival, of injection of interferon (IFN)-α-transfected dendritic cells (DC-IFN-α) into intracranial tumors in mice immunized previously with syngeneic dendritic cells (DCs) pulsed either with ovalbumin-derived CTL or T helper epitopes. These immunizations protected animals from s.c. challenge with ovalbumin-expressing M05 melanoma (class I+ and class II-negative). Notably, antiovalbumin CTL responses were observed in animals vaccinated with an ovalbumin-derived T helper epitope but only after the mice were challenged with M05 cells. This cross-priming of CTL was dependent on both CD4+ and CD8+ T cells. Because we observed that s.c., but not intracranial, tumors were infiltrated with CD11c+ DCs, and because IFN-α promotes the activation and survival of both DCs and T cells, we evaluated the combinational antitumor effects of injecting adenoviral (Ad)-IFN-α-engineered DCs into intracranial M05 tumors in preimmunized mice. Delivery of DC-IFN-α prolonged survival. This was most notable for animals prevaccinated with both the CTL and T helper ovalbumin epitopes, with 60% (6 of 10) of mice (versus 0 of 10 of control animals) surviving for >80 days after tumor challenge. DC-IFN-α appeared to persist longer than mock-transfected DCs within the intracranial tumor microenvironment, and DC-IFN-α-treated mice exhibited enhanced levels of ovalbumin-specific CTL in draining cervical lymph nodes. On the basis of these results, we believe that local expression of IFN-α by DCs within the intracranial tumor site may enhance the clinical efficacy of peripheral vaccine approaches for brain tumors.


Neurosurgery | 2016

Human Connectome-Based Tractographic Atlas of the Brainstem Connections and Surgical Approaches.

Antonio Meola; Fang-Cheng Yeh; Wendy Fellows-Mayle; Jared Weed; Juan C. Fernandez-Miranda

BACKGROUND The brainstem is one of the most challenging areas for the neurosurgeon because of the limited space between gray matter nuclei and white matter pathways. Diffusion tensor imaging-based tractography has been used to study the brainstem structure, but the angular and spatial resolution could be improved further with advanced diffusion magnetic resonance imaging (MRI). OBJECTIVE To construct a high-angular/spatial resolution, wide-population-based, comprehensive tractography atlas that presents an anatomical review of the surgical approaches to the brainstem. METHODS We applied advanced diffusion MRI fiber tractography to a population-based atlas constructed with data from a total of 488 subjects from the Human Connectome Project-488. Five formalin-fixed brains were studied for surgical landmarks. Luxol Fast Blue-stained histological sections were used to validate the results of tractography. RESULTS We acquired the tractography of the major brainstem pathways and validated them with histological analysis. The pathways included the cerebellar peduncles, corticospinal tract, corticopontine tracts, medial lemniscus, lateral lemniscus, spinothalamic tract, rubrospinal tract, central tegmental tract, medial longitudinal fasciculus, and dorsal longitudinal fasciculus. Then, the reconstructed 3-dimensional brainstem structure was sectioned at the level of classic surgical approaches, namely supracollicular, infracollicular, lateral mesencephalic, perioculomotor, peritrigeminal, anterolateral (to the medulla), and retro-olivary approaches. CONCLUSION The advanced diffusion MRI fiber tracking is a powerful tool to explore the brainstem neuroanatomy and to achieve a better understanding of surgical approaches. ABBREVIATIONS CN, cranial nerveCPT, corticopontine tractCST, corticospinal tractCTT, central tegmental tractDLF, dorsal longitudinal fasciculusHCP, Human Connectome ProjectML, medial lemniscusMLF, medial longitudinal fasciculusRST, rubrospinal tractSTT, spinothalamic tract.


Neurosurgery | 2011

Dipyrone Inhibits Neuronal Cell Death and Diminishes Hypoxic/Ischemic Brain Injury

Yi Zhang; Xin Wang; Sergei V. Baranov; Shan Zhu; Zhihong Huang; Wendy Fellows-Mayle; Jiying Jiang; Arthur L. Day; Bruce S. Kristal; Robert M. Friedlander

BACKGROUND:Dipyrone is an analgesic and antipyretic drug usually prescribed for patients with inflammatory conditions. We recently identified dipyrone as an antiapoptotic agent by screening a library of 1040 compounds for their ability to inhibit cytochrome c release from isolated mitochondria. OBJECTIVE:We investigated the potential neuroprotective properties of dipyrone in cerebral ischemia. METHODS:We evaluated the protective effects of dipyrone in experimental models of neuronal hypoxia/ischemia, including an oxygen/glucose deprivation model in primary cerebrocortical neurons and a focal cerebral ischemia model in mice. RESULTS:Dipyrone reduced hypoxia/ischemia injury in both cellular and animal models. Dipyrone inhibited the release of cytochrome c and other mitochondrial apoptogenic factors from mitochondria into the cytoplasm, and attenuated subsequent caspase-9 and caspase-3 activation both in vitro and in vivo. Moreover, dipyrone prevented ischemia-induced changes in Bcl-2 and tBid, and ameliorated oxygen/glucose deprivation-mediated loss of mitochondrial membrane potential. Dipyrone also inhibited ischemia-induced reactive microgliosis. In the cellular models evaluated, dipyrone did not inhibit oxygen/glucose deprivation-induced cyclooxygenase-2 activation. CONCLUSION:Dipyrone is remarkably neuroprotective in cerebral ischemia, and its cyclooxygenase-independent protective properties are, at least in part, due to the inhibition of mitochondrial cell death cascades.

Collaboration


Dive into the Wendy Fellows-Mayle's collaboration.

Top Co-Authors

Avatar

Mark P. Mooney

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Hideho Okada

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian F. Pollack

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jill E. Dusak

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Ajay Niranjan

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge