Wendy G. Halpern
Genentech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wendy G. Halpern.
Toxicologic Pathology | 2010
Michael W. Leach; Wendy G. Halpern; Carol W. Johnson; Jennifer L. Rojko; Tim K. MacLachlan; Curtis M. Chan; Elizabeth Galbreath; Anthony M. Ndifor; Diann Blanset; Evelyne Polack; Joy Cavagnaro
Tissue cross-reactivity (TCR) studies are screening assays recommended for antibody and antibody-like molecules that contain a complementarity-determining region (CDR), primarily to identify off-target binding and, secondarily, to identify sites of on-target binding that were not previously identified. At the present time, TCR studies involve the ex vivo immunohistochemical (IHC) staining of a panel of frozen tissues from humans and animals, are conducted prior to dosing humans, and results are filed with the initial IND/CTA to support first-in-human clinical trials. In some cases, a robust TCR assay cannot be developed, and in these cases the lack of a TCR assay should not prevent a program from moving forward. The TCR assay by itself has variable correlation with toxicity or efficacy. Therefore, any findings of interest should be further evaluated and interpreted in the context of the overall pharmacology and safety assessment data package. TCR studies are generally not recommended for surrogate molecules or for comparability assessments in the context of manufacturing/cell line changes. Overall, the design, implementation, and interpretation of TCR studies should follow a case-by-case approach.
Birth Defects Research Part B-developmental and Reproductive Toxicology | 2011
LaRonda L. Morford; Christopher J. Bowman; Diann Blanset; Ingrid Brück Bøgh; Gary J. Chellman; Wendy G. Halpern; Gerhard F. Weinbauer; Timothy P. Coogan
Evaluation of pharmaceutical agents in children is now conducted earlier in the drug development process. An important consideration for this pediatric use is how to assess and support its safety. This article is a collaborative effort of industry toxicologists to review strategies, challenges, and current practice regarding preclinical safety evaluations supporting pediatric drug development with biopharmaceuticals. Biopharmaceuticals include a diverse group of molecular, cell-based or gene therapeutics derived from biological sources or complex biotechnological processes. The principles of preclinical support of pediatric drug development for biopharmaceuticals are similar to those for small molecule pharmaceuticals and in general follow the same regulatory guidances outlined by the Food and Drug Administration and European Medicines Agency. However, many biopharmaceuticals are also inherently different, with limited species specificity or immunogenic potential which may impact the approach taken. This article discusses several key areas to aid in the support of pediatric clinical use, study design considerations for juvenile toxicity studies when they are needed, and current practices to support pediatric drug development based on surveys specifically targeting biopharmaceutical development.
Toxicologic Pathology | 2016
Wendy G. Halpern; Mehrdad Ameri; Christopher J. Bowman; Michael R. Elwell; Michael Mirsky; Julian Oliver; Karen S. Regan; Amera K. Remick; Vicki Sutherland; Kary E. Thompson; Claudine Tremblay; Midori Yoshida; Lindsay Tomlinson
Standard components of nonclinical toxicity testing for novel pharmaceuticals include clinical and anatomic pathology, as well as separate evaluation of effects on reproduction and development to inform clinical development and labeling. General study designs in regulatory guidances do not specifically mandate use of pathology or reproductive end points across all study types; thus, inclusion and use of these end points are variable. The Scientific and Regulatory Policy Committee of the Society of Toxicologic Pathology (STP) formed a Working Group to assess the current guidelines and practices on the use of reproductive, anatomic pathology, and clinical pathology end points in general, reproductive, and developmental toxicology studies. The Working Group constructed a survey sent to pathologists and reproductive toxicologists, and responses from participating organizations were collected through the STP for evaluation by the Working Group. The regulatory context, relevant survey results, and collective experience of the Working Group are discussed and provide the basis of each assessment by study type. Overall, the current practice of including specific end points on a case-by-case basis is considered appropriate. Points to consider are summarized for inclusion of reproductive end points in general toxicity studies and for the informed use of pathology end points in reproductive and developmental toxicity studies.
Toxicologic Pathology | 2018
Kenneth A. Schafer; John Eighmy; James D. Fikes; Wendy G. Halpern; Renee R. Hukkanen; Gerald G. Long; Emily K. Meseck; Daniel J. Patrick; Michael S. Thibodeau; Charles E. Wood; Sabine Francke
The severity grade is an important component of a histopathologic diagnosis in a nonclinical toxicity study that helps distinguish treatment-related effects from background findings and aids in determining adverse dose levels during hazard characterization. Severity grades should be assigned based only on the extent (i.e., amount and complexity) of the morphologic change in the examined tissue section(s) and be clearly defined in the pathology report for critical lesions impacting study interpretation. However, the level of detail provided and criteria by which severity grades are assigned can vary, which can lead to inappropriate comparisons and confusion when evaluating pathology results. To help address this issue, a Working Group of the Society of Toxicologic Pathology’s Scientific and Regulatory Policy Committee was formed to provide a “points to consider” article on the assignment and application of pathology severity grades. Overall, the Working Group supports greater transparency and consistency in the reporting of grading scales and provides recommendations to improve selection of diagnoses requiring more detailed severity criteria. This information should enhance the overall understanding by toxicologic pathologists, toxicologists, and regulatory reviewers of pathology findings and thereby improve effective communication in regulatory submissions.
International Journal of Toxicology | 2016
Rodney A. Prell; Wendy G. Halpern; Gautham K. Rao
The intent of cancer immunotherapy (CIT) is to generate and enhance T-cell responses against tumors. The tumor microenvironment establishes several inhibitory pathways that lead to suppression of the local immune response, which is permissive for tumor growth. The efficacy of different CITs, alone and in combination, stems from reinvigorating the tumor immune response via several mechanisms, including costimulatory agonists, checkpoint inhibitors, and vaccines. However, immune responses to other antigens (self and foreign) may also be enhanced, resulting in potentially undesired effects. In outbred mammalian pregnancies, the fetus expresses paternally derived alloantigens that are recognized as foreign by the maternal immune system. If unchecked or enhanced, maternal immunity to these alloantigens represents a developmental and reproductive risk and thus is a general liability for cancer immunotherapeutic molecules. We propose a tiered approach to confirm this mechanistic reproductive liability for CIT molecules. A rodent allopregnancy model is based on breeding 2 different strains of mice so that paternally derived alloantigens are expressed by the fetus. When tested with a cross-reactive biotherapeutic, small molecule drug, or surrogate molecule, this model should reveal on-target reproductive liabilities if the pathway is involved in maintaining pregnancy. Alternatively, allopregnancy models with genetically modified mice can be interrogated for exquisitely specific biotherapeutics with restricted species reactivity. The allopregnancy model represents a relatively straightforward approach to confirm an expected on-target reproductive risk for CIT molecules. For biotherapeutics, it could potentially replace more complex developmental and reproductive toxicity testing in nonhuman primates when a pregnancy hazard is confirmed or expected.
The Nonhuman Primate in Nonclinical Drug Development and Safety Assessment | 2015
Gerhard F. Weinbauer; Christopher J. Bowman; Wendy G. Halpern; Gary J. Chellman
Abstract Nonhuman primates (NHPs) are an important model for evaluating the potential effects of new biopharmaceuticals on male and female reproduction and pre- and postnatal development. Toxicity testing for these parameters should be conducted in NHPs only when they are the only relevant species or are critical for the human risk assessment. In general, evaluation of potential effects on male and female reproduction can be included in general toxicity studies using sexually mature animals, and effects on development can be assessed in a single, well-designed developmental toxicity study. In the case of specific concerns about effects on the reproductive system, additional studies may be considered. Although the concepts of standard toxicity testing for development and reproduction still apply, the NHP model requires different considerations and in most cases must be tailored based on the type of molecule, the intended patient population, and the expected pharmacology to enable the optimal use of these animals.
Toxicologic Pathology | 2016
Renee R. Hukkanen; Wendy G. Halpern; Justin D. Vidal
In July 2015, the U.S. Food and Drug Administration (FDA) posted a new draft guidance entitled “Testicular Toxicity: Evaluation during Drug Development Guidance for Industry,” with a 90-day public comment period. As the nonclinical assessment of testicular toxicity often relies on the expert interpretation of pathology affecting the male reproductive tract, this draft guidance is considered directly relevant to the toxicologic pathology community. Therefore, a working group was formed through the Scientific and Regulatory Policy Committee of the Society of Toxicologic Pathologists (STPs) to provide a detailed review of the draft guidance. Specific comments on the guidance were submitted to the FDA by the STP. The draft guidance and all comments received are currently under review with the FDA. This commentary provides a summary of the components of the draft guidance and the comments submitted by the STP with acknowledgment of different perspectives reflected in comments from other respondents.
Toxicological Sciences | 2014
Thomas Gelzleichter; Wendy G. Halpern; Roy Erwin; Amos Baruch; Maya Leabman; Abigail S. Forrest; Christina M. Satterwhite; Kun Peng; Jennifer Chilton; Dale Stevens
RG7652 is a human IgG1 monoclonal antibody designed to inhibit proprotein convertase subtilisin/kexin type 9 (PCSK9) binding to hepatic low density lipoprotein receptor (LDL-r), thereby blocking PCSK9-mediated degradation of LDL-r. This therapeutic candidate is under development for the prevention of cardiovascular mortality and morbidity in dyslipidemic patients. The primary objective of this study was to evaluate the potential immunotoxicological effects of RG7652 when given to cynomolgus monkeys either alone or in combination with a daily oral dose of atorvastatin. Administration of RG7652 via subcutaneous injection every other week for 12 weeks (a total of seven doses), daily oral doses of atorvastatin (total of 85 doses), and combinations of each up to 15 and 20 mg/kg/dose, respectively, were well tolerated and there was no evidence of alteration in immune function. Administration of pharmacologically relevant doses of RG7652 in combination with atorvastatin to healthy monkeys does not result in clinically meaningful immunosuppression as measured by T-cell dependent antibody responses, natural killer cell activity, immunophenotype, or delayed type hypersensitivity. The only pharmacologically mediated changes observed during the dosing period were the anticipated changes in circulating cholesterol.
Toxicological Sciences | 2018
Rodney A. Prell; Noel Dybdal; Akihiro Arima; Yutaka Chihaya; Ihsan Nijem; Wendy G. Halpern
Onartuzumab is an engineered single arm, monovalent monoclonal antibody that targets the MET receptor and prevents hepatocyte growth factor (HGF) signaling. Knockout mice have clearly demonstrated that HGF/MET signaling is developmentally critical. A pre- and postnatal development study (enhanced design) was conducted in cynomolgus monkeys to evaluate the potential developmental consequences following onartuzumab administration. Control or onartuzumab, at loading/maintenance doses of 75/50 mg/kg (low) or 100/100 mg/kg (high), was administered intravenously once weekly to 12 confirmed pregnant female cynomolgus monkeys per group from gestation day (GD) 20 through GD 174. Onartuzumab administration resulted in decreased gestation length, decreased birth weight, and increased fetal and perinatal mortality. A GD147 C-section was conducted for a subset of Control and High Dose monkeys, and identified placental infarcts with hemorrhage in the chorionic plate, chorionic villus and/or decidual plate. These findings were limited to placentas from onartuzumab-treated animals. In addition, decreased cellularity of the hepatocytes with dilated hepatic sinusoids was inconsistently observed in the liver of a few fetal or infant monkeys that died in the perinatal period. Surviving offspring had some evidence of developmental delay compared with controls, but no overt teratogenicity. Overall, effects on the perinatal fetuses were consistent with those reported in knockout mice, but not as severe. Onartuzumab concentrations were low or below the level of detection in most offspring, with cord blood concentrations only 1%-2% of maternal levels on GD 147. Malperfusion secondary to onartuzumab-induced placental injury could explain the adverse pregnancy outcomes, fetal growth restriction and relatively low fetal exposures.
Regulatory Toxicology and Pharmacology | 2018
Meredith Rocca; LaRonda L. Morford; Diann Blanset; Wendy G. Halpern; Joy Cavagnaro; Christopher J. Bowman
Toxicity studies in pregnant animals are not always necessary for assessing the human risk of developmental toxicity of biopharmaceuticals. The growing experience and information on target biology and molecule-specific pharmacokinetics present a powerful approach to accurately anticipate effects of target engagement by biopharmaceuticals using a weight of evidence approach. The weight of evidence assessment should include all available data including target biology, pharmacokinetics, class effects, genetically modified animals, human mutations, and a thorough literature review. When assimilated, this weight of evidence evaluation may be sufficient to inform risk for specific clinical indications and patient populations. While under current guidance this approach is only applicable for drugs and biologics for oncology, the authors would like to suggest that this approach may also be appropriate for other disease indications. When there is an unacceptable level of uncertainty and a toxicity study in pregnant animals could impact human risk assessment, then such studies should be considered. Determination of appropriate nonclinical species for developmental toxicity studies to inform human risk should consider species-specific limitations, reproductive physiology, and pharmacology of the biopharmaceutical. This paper will provide considerations and examples of the weight of evidence approach to evaluating the human risk of developmental toxicity of biopharmaceuticals.