Wendy Harwood
Norwich Research Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wendy Harwood.
Plant Cell Reports | 2005
S. Travella; S. M. Ross; J. Harden; C. Everett; J. W. Snape; Wendy Harwood
Two barley transformation systems, Agrobacterium-mediated and particle bombardment, were compared in terms of transformation efficiency, transgene copy number, expression, inheritance and physical structure of the transgenic loci using fluorescence in situ hybridisation (FISH). The efficiency of Agrobacterium-mediated transformation was double that obtained with particle bombardment. While 100% of the Agrobacterium-derived lines integrated between one and three copies of the transgene, 60% of the transgenic lines derived by particle bombardment integrated more than eight copies of the transgene. In most of the Agrobacterium-derived lines, the integrated T-DNA was stable and inherited as a simple Mendelian trait. Transgene silencing was frequently observed in the T1 populations of the bombardment-derived lines. The FISH technique was able to reveal additional details of the transgene integration site. For the efficient production of transgenic barley plants, with stable transgene expression and reduced silencing, the Agrobacterium-mediated method appears to offer significant advantages over particle bombardment.
Plant Methods | 2008
Joanne G. Bartlett; Sílvia C Alves; Mark A. Smedley; J. W. Snape; Wendy Harwood
BackgroundPlant transformation is an invaluable tool for basic plant research, as well as a useful technique for the direct improvement of commercial crops. Barley (Hordeum vulgare) is the fourth most abundant cereal crop in the world. It also provides a useful model for the study of wheat, which has a larger and more complex genome. Most existing barley transformation methodologies are either complex or have low (<10%) transformation efficiencies.ResultsA robust, simple and reproducible barley transformation protocol has been developed that yields average transformation efficiencies of 25%. This protocol is based on the infection of immature barley embryos with Agrobacterium strain AGL1, carrying vectors from the pBract series that contain the hpt gene (conferring hygromycin resistance) as a selectable marker. Results of large scale experiments utilising the luc (firefly luciferase) gene as a reporter are described. The method presented here has been used to produce hundreds of independent, transgenic plant lines and we show that a large proportion of these lines contain single copies of the luc gene.ConclusionThis protocol demonstrates significant improvements in both efficiency and ease of use over existing barley transformation methods. This opens up opportunities for the development of functional genomics resources in barley.
Journal of Experimental Botany | 2012
Debora Gasperini; Andy Greenland; Peter Hedden; René Dreos; Wendy Harwood; Simon Griffiths
Over the next decade, wheat grain production must increase to meet the demand of a fast growing human population. One strategy to meet this challenge is to raise wheat productivity by optimizing plant stature. The Reduced height 8 (Rht8) semi-dwarfing gene is one of the few, together with the Green Revolution genes, to reduce stature of wheat (Triticum aestivum L.), and improve lodging resistance, without compromising grain yield. Rht8 is widely used in dry environments such as Mediterranean countries where it increases plant adaptability. With recent climate change, its use could become increasingly important even in more northern latitudes. In the present study, the characterization of Rht8 was furthered. Morphological analyses show that the semi-dwarf phenotype of Rht8 lines is due to shorter internodal segments along the wheat culm, achieved through reduced cell elongation. Physiological experiments show that the reduced cell elongation is not due to defective gibberellin biosynthesis or signalling, but possibly to a reduced sensitivity to brassinosteroids. Using a fine-resolution mapping approach and screening 3104 F2 individuals of a newly developed mapping population, the Rht8 genetic interval was reduced from 20.5 cM to 1.29 cM. Comparative genomics with model genomes confined the Rht8 syntenic intervals to 3.3 Mb of the short arm of rice chromosome 4, and to 2 Mb of Brachypodium distachyon chromosome 5. The very high resolution potential of the plant material generated is crucial for the eventual cloning of Rht8.
Journal of Experimental Botany | 2012
Wendy Harwood
Highly efficient and cost-effective transformation technologies are essential for studying gene function in the major cereal crops, wheat and barley. Demand for efficient transformation systems to allow over-expression, or RNAi-mediated silencing of target genes, is greatly increasing. This is due to technology advances, such as rapid genome sequencing, enhancing the rate of gene discovery and thus leading to a large number of genes requiring functional analysis through transformation pipelines. Barley can be transformed at very high efficiency but the methods are genotype-dependent. Wheat is more difficult to transform, however, recent advances are also allowing the development of high-throughput transformation systems in wheat. For many gene function studies, barley can be used as a model for wheat due to its highly efficient transformation rates and smaller, less complex genome. An ideal transformation system needs to be extremely efficient, simple to perform, inexpensive, genotype-independent, and give the required expression of the transgene. Considerable progress has been made in enhancing transformation efficiencies, controlling transgene expression and in understanding and manipulating transgene insertion. However, a number of challenges still remain, one of the key ones being the development of genotype-independent transformation systems for wheat and barley.
Journal of Experimental Botany | 2013
Alexandra Soltész; Mark A. Smedley; Ildikó Vashegyi; Gábor Galiba; Wendy Harwood; Attila Vágújfalvi
The enhancement of winter hardiness is one of the most important tasks facing breeders of winter cereals. For this reason, the examination of those regulatory genes involved in the cold acclimation processes is of central importance. The aim of the present work was the functional analysis of two wheat CBF transcription factors, namely TaCBF14 and TaCBF15, shown by previous experiments to play a role in the development of frost tolerance. These genes were isolated from winter wheat and then transformed into spring barley, after which the effect of the transgenes on low temperature stress tolerance was examined. Two different types of frost tests were applied; plants were hardened at low temperature before freezing, or plants were subjected to frost without a hardening period. The analysis showed that TaCBF14 and TaCBF15 transgenes improve the frost tolerance to such an extent that the transgenic lines were able to survive freezing temperatures several degrees lower than that which proved lethal for the wild-type spring barley. After freezing, lower ion leakage was measured in transgenic leaves, showing that these plants were less damaged by the frost. Additionally, a higher Fv/Fm parameter was determined, indicating that photosystem II worked more efficiently in the transgenics. Gene expression studies showed that HvCOR14b, HvDHN5, and HvDHN8 genes were up-regulated by TaCBF14 and TaCBF15. Beyond that, transgenic lines exhibited moderate retarded development, slower growth, and minor late flowering compared with the wild type, with enhanced transcript level of the gibberellin catabolic HvGA2ox5 gene.
Euphytica | 2000
Wendy Harwood; S. M. Ross; P. Cilento; J. W. Snape
Immature embryos of the spring barley variety GoldenPromise, were bombarded with three different particledelivery systems and both transient and stabletransformation examined. In addition, a range oftechniques for the preparation of the DNA coated goldparticles was examined. Fertile transgenic barleyplants were obtained using three particle preparationtechniques which differed in the amount of gold andDNA used for each bombardment. However, only one ofthe particle delivery systems, the PDS 1000/He device,appeared to be effective in yielding transformedbarley plants.
Nature plants | 2018
Amy Watson; Sreya Ghosh; Matthew J. Williams; William S. Cuddy; James Simmonds; María-Dolores Rey; M. Asyraf Md. Hatta; Alison Hinchliffe; Andrew Steed; Daniel Reynolds; Nikolai M. Adamski; Andy Breakspear; Andrey V. Korolev; Tracey Rayner; Laura E. Dixon; Adnan Riaz; William Martin; Merrill Ryan; David Edwards; Jacqueline Batley; Harsh Raman; Jeremy Carter; Christian Rogers; Claire Domoney; Graham Moore; Wendy Harwood; P. Nicholson; I. H. DeLacy; Ji Zhou; Cristobal Uauy
The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand1. This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called ‘speed breeding’, which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2–3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.Fully enclosed, controlled-environment growth chambers can accelerate plant development. Such ‘speed breeding’ reduces generation times to accelerate crop breeding and research programmes, and can integrate with other modern crop breeding technologies.
Plant Physiology | 2011
Duncan Stanley; Martin Rejzek; Henrik Næsted; Mark A. Smedley; Sofía Otero; Brendan Fahy; Frazer Thorpe; Robert J. Nash; Wendy Harwood; Birte Svensson; Kay Denyer; Robert A. Field; Alison M. Smith
The importance of α-glucosidase in the endosperm starch metabolism of barley (Hordeum vulgare) seedlings is poorly understood. The enzyme converts maltose to glucose (Glc), but in vitro studies indicate that it can also attack starch granules. To discover its role in vivo, we took complementary chemical-genetic and reverse-genetic approaches. We identified iminosugar inhibitors of a recombinant form of an α-glucosidase previously discovered in barley endosperm (ALPHA-GLUCOSIDASE97 [HvAGL97]), and applied four of them to germinating grains. All four decreased the Glc-to-maltose ratio in the endosperm 10 d after imbibition, implying inhibition of maltase activity. Three of the four inhibitors also reduced starch degradation and seedling growth, but the fourth did not affect these parameters. Inhibition of starch degradation was apparently not due to inhibition of amylases. Inhibition of seedling growth was primarily a direct effect of the inhibitors on roots and coleoptiles rather than an indirect effect of the inhibition of endosperm metabolism. It may reflect inhibition of glycoprotein-processing glucosidases in these organs. In transgenic seedlings carrying an RNA interference silencing cassette for HvAgl97, α-glucosidase activity was reduced by up to 50%. There was a large decrease in the Glc-to-maltose ratio in these lines but no effect on starch degradation or seedling growth. Our results suggest that the α-glucosidase HvAGL97 is the major endosperm enzyme catalyzing the conversion of maltose to Glc but is not required for starch degradation. However, the effects of three glucosidase inhibitors on starch degradation in the endosperm indicate the existence of unidentified glucosidase(s) required for this process.
Plant Biotechnology Journal | 2009
Joanne G. Bartlett; J. W. Snape; Wendy Harwood
It is desirable to produce transgenic plants which have optimized and stable levels of transgene expression. Low levels of transgene expression may lead to an insufficient quantity of transgenic protein being produced for a particular purpose. This report demonstrates a means of enhancing transgene expression in barley beyond that conferred by the Ubi1 promoter, via the inclusion of an intron at a specific position within the transgene coding sequence. We independently cloned two different introns (RpoT-i4 from maize and UBQ10-i1 from Arabidopsis) into the same position within the firefly luciferase (luc) coding sequence. The constructs produced were transformed into barley (Hordeum vulgare) via Agrobacterium-mediated transformation, and the resulting transformant populations (of between 119 and 123 independent plants for each construct) were assayed for luciferase activity. Both introns significantly increased luciferase activity, and a quantitative reverse-transcription polymerase chain reaction assay revealed that the introns increased the accumulation of luciferase mRNA transcripts. The enhanced transgene expression levels were maintained in the T(1) and T(2) progenies. These findings show that intron-mediated enhancement is a valuable additional tool for achieving high and stable levels of transgene expression in crop plants.
Methods of Molecular Biology | 2009
Wendy Harwood; Joanne G. Bartlett; Sílvia C Alves; Matthew Perry; Mark A. Smedley; Nicola Leyl; J. W. Snape
Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past 10 years. Agrobacterium offers a number of advantages over biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system.