Wendy M. Campana
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wendy M. Campana.
Journal of Neurochemistry | 2003
Camilla I. Svensson; Martin Marsala; Anna Westerlund; Nigel A. Calcutt; Wendy M. Campana; Rosanne Catalano; Ying Feng; Andrew A. Protter; Brian Scott; Tony L. Yaksh
We examined the effect of p38 mitogen‐activated protein kinase (MAPK) inhibitors in models of nociception and correlated this effect with localization and expression levels of p38 MAPK in spinal cord. There was a rapid increase in phosphorylated p38 MAPK in spinal cord following intrathecal administration of substance P or intradermal injection of formalin. Immuncytochemisty revealed that phosphorylated p38 MAPK‐immunoreactive cells were predominantly present in laminae I–IV of the dorsal horn. Double‐staining with markers for neurons, microglia, astrocytes and oligodendrocytes unexpectedly revealed co‐localization with microglia but not with neurons or other glia. Pretreatment with p38 MAPK inhibitors (SB20358 or SD‐282) had no effect on acute thermal thresholds. However, they attenuated hyperalgesia in several nociceptive models associated with spinal sensitization including direct spinal activation (intrathecal substance P) and peripheral tissue inflammation (intraplantar formalin or carrageenan). Spinal sensitization, manifested by enhanced expression of cyclo‐oxygenase‐2 and inflammation‐induced appearance of Fos‐positive neurons, was blocked by pretreatment, but not post‐treatment, with p38 MAPK inhibitors. Taken together, these results indicate that spinal p38 MAPK is involved in inflammation‐induced pain and that activated spinal microglia play a direct role in spinal nociceptive processing.
Brain Behavior and Immunity | 2007
Wendy M. Campana
Schwann cells provide trophic support and in some cases, insulation to axons. After injury, Schwann cells undergo phenotypic modulation, acquiring the capacity to proliferate, migrate, and secrete soluble mediators that control Wallerian degeneration and regeneration. Amongst the soluble mediators are pro-inflammatory cytokines that function as chemoattractants but also may sensitize nociceptors. At the same time, Schwann cells produce factors that counterbalance the pro-inflammatory cytokines, including, for example, interleukin-10 and erythropoietin (Epo). Epo and its receptor, EpoR, are up-regulated in Schwann cells after peripheral nerve injury. EpoR-dependent cell signaling may limit production of TNF-alpha by Schwann cells within the first five days after injury. In addition, EpoR-dependent cell signaling may reduce axonal degeneration and facilitate recovery from chronic pain states. Other novel factors that regulate Schwann cell phenotype in nerve injury have been recently identified, including the low-density lipoprotein receptor related protein (LRP-1). Our recent studies indicate that LRP-1 may be essential for Schwann cell survival after peripheral nerve injury. To analyze the function of specific Schwann cell gene products in nerve injury and sensory function, conditional gene deletion and expression experiments in mice have been executed using promoters that are selectively activated in myelinating or non-myelinating Schwann cells. Blocking ErbB receptor-initiated cell-signaling in either myelinating or non-myelinating Schwann cells results in unique sensory dysfunctions. Data obtained in gene-targeted animals suggest that sensory alterations can result from changes in Schwann cell physiology without profound myelin degeneration or axonopathy. Aberrations in Schwann cell biology may lie at the foundation of neuropathic pain and represent an exciting target for therapeutic intervention.
Journal of Neuropathology and Experimental Neurology | 1999
Nigel A. Calcutt; Wendy M. Campana; Eskeland Nl; Mohiuddin L; Kevin C. Dines; Andrew P. Mizisin; John S. O'Brien
We have recently demonstrated that prosaposin is a neurotrophic and myelinotrophic factor with the active trophic sequence located at the N-terminal region of the saposin C domain. There are also reports that prosaposin mRNA is increased distal to a physical nerve injury and that exogenous prosaposin treatment induces subsequent neuronal sprouting, suggesting involvement in repair processes. In the present study, we show that prosaposin mRNA is significantly (p < 0.05) elevated in the peripheral nerve of streptozotocin-diabetic rats, a model of insulin-deficient diabetes in which nerve injury arises from the metabolic trauma of hyperglycemia and its consequences. A 14 amino acid peptide derived from the neurotrophic region of prosaposin prevented the development of deficits in both large and small fiber function caused by diabetes in rats. The dose-dependent prevention of nerve conduction slowing by TX 14(A) was accompanied by preservation of axonal caliber and sodium-potassium ATPase activity, while prevention of thermal hypoalgesia was associated with attenuation of the decline in nerve substance P levels. It is concluded that nerve subject to the metabolic injury of uncontrolled diabetes responds by increasing prosaposin gene expression, and that prosaposin-derived neurotrophic peptides may provide a novel therapeutic approach to treatment of diabetic and other peripheral neuropathies.
Journal of Biological Chemistry | 2010
Elisabetta Mantuano; Minji Jo; Steven L. Gonias; Wendy M. Campana
LDL receptor-related protein (LRP1) is expressed by Schwann cells in vivo mainly after injury to the peripheral nervous system (PNS). Schwann cells in primary culture, which provide a model of Schwann cells in the injured PNS, also express abundant LRP1. Herein, we show that LRP1 gene-silencing or treatment with receptor-associated protein (RAP) promotes Schwann cell adhesion and inhibits cell migration on fibronectin. LRP1 gene-silencing also resulted in the formation of prominent focal adhesions and actin stress fibers. These changes, which were induced by loss of LRP1 expression or activity, were explained mechanistically by an increase in activated RhoA, coupled with a decrease in activated Rac1. Known LRP1 ligands, including matrix metalloprotease-9, tissue-type plasminogen activator, and α2-macroglobulin activated Rac1 in LRP1-expressing Schwann cells. An inhibitor of Rac1 activation promoted Schwann cell adhesion. Conversely, in cells in which LRP1 was silenced, a Rho kinase inhibitor promoted migration and inhibited adhesion. These results demonstrate that direct binding of ligands to LRP1 controls activation of small Rho family GTPases. The effects of LRP1 gene-silencing and RAP implicate autocrine pathways involving endogenously produced LRP1 ligands. Regulation of Schwann cell migration by LRP1 may be important in PNS injury.
Journal of Neurochemistry | 2002
Roberta Misasi; Maurizio Sorice; Tina Garofalo; Tamara Griggi; Wendy M. Campana; M. Giammatteo; A. Pavan; Masao Hiraiwa; Giuseppe Pontieri; John S. O'Brien
Abstract: Prosaposin, the precursor of saposins A, B, C, and D, was recently identified as a neurotrophic factor in vitro as well as in vivo. Its neurotrophic activity has been localized to a linear 12‐amino acid sequence located in the NH2‐terminal portion of the saposin C domain. In this study, we show the colocalization of prosaposin and ganglioside GM3 on NS20Y cell plasma membrane by scanning confocal microscopy. Also, TLC and western blot analyses showed that GM3 was specifically associated with prosaposin in immunoprecipitates; this binding was Ca2+‐independent and not disassociated during sodium dodecyl sulfate‐polyacrylamide gel electrophoresis. The association of prosaposin‐GM3 complexes on the cell surface appeared to be functionally important, as determined by differentiation assays. Neurite sprouting, induced by GM3, was inhibited by antibodies raised against a 22‐mer peptide, prosaptide 769, containing the neurotrophic sequence of prosaposin. In addition, pertussis toxin inhibited prosaptide‐induced neurite outgrowth, as well as prosaptide‐enhanced ganglioside concentrations in NS20Y cells, suggesting that prosaposin acted via a G protein‐mediated pathway, affecting both ganglioside content and neuronal differentiation. Our findings revealed a direct and right GM3‐prosaposin association on NS20Y plasma membranes. We suggest that ganglioside‐protein complexes are structural components of the prosaposin receptor involved in cell differentiation.
Experimental Neurology | 2016
Corinne Lee-Kubli; Martin Ingves; Kenneth Henry; Rani Shiao; Eileen Collyer; Mark H. Tuszynski; Wendy M. Campana
Human SCI is frequently associated with chronic pain that is severe and refractory to medical therapy. Most rodent models used to assess pain outcomes in SCI apply moderate injuries to lower thoracic spinal levels, whereas the majority of human lesions are severe in degree and occur at cervical or upper thoracic levels. To better model and understand mechanisms associated with chronic pain after SCI, we subjected adult rats to T3 severe compression or complete transection lesions, and examined pain-related behaviors for three months. Within one week after injury, rats developed consistent forepaw pain-related behaviors including increased spontaneous lifts, tactile allodynia and cold sensitivity that persisted for three months. Place escape avoidance testing confirmed that withdrawal of the forepaws from a von Frey stimulus represented active pain-related aversion. Spontaneous and evoked pain-related measures were attenuated by gabapentin, further indicating that these behaviors reflect development of pain. Spinal level of injury was relevant: rats with T11 severe SCI did not exhibit forepaw pain-related behaviors. Immunoblotting and immunofluorescence of C6-C8 spinal dorsal horn, reflecting sensory innervation of the forepaw, revealed: 1) expansion of CGRP immunoreactivity in lamina I/II; 2) increased GAP-43 expression; and 3) increased IBA1, GFAP and connexin-43 expression. These findings indicate that aberrant pain fiber sprouting and gliopathy occur after severe SCI. Notably, satellite glial cells (SGCs) in C6-C8 DRGs exhibited increases in GFAP and connexin-43, suggesting ongoing peripheral sensitization. Carbenoxolone, a gap junction inhibitor, and specific peptide inhibitors of connexin-43, ameliorated established tactile allodynia after severe SCI. Collectively, severe T3 SCI successfully models persistent pain states and could constitute a useful model system for examining candidate translational pain therapies after SCI.
PLOS ONE | 2013
Kazuyo Yamauchi; Tomonori Yamauchi; Elisabetta Mantuano; Kenichi Murakami; Kenneth Henry; Kazuhisa Takahashi; Wendy M. Campana
Developing sensory neurons require neurotrophic support for survival, neurite outgrowth and myelination. The low-density lipoprotein receptor-related protein-1 (LRP1) transactivates Trk receptors and thereby functions as a putative neurotrophin. Herein, we show that LRP1 is abundantly expressed in developing dorsal root ganglia (DRG) and that LRP1-dependent cell signaling supports survival, neurite extension and receptivity to Schwann cells even in the absence of neurotrophins. Cultured embryonic DRG neurons (E15) were treated with previously characterized LRP1 ligands, LRP1-receptor binding domain of α2-macroglobulin (RBD), hemopexin domain of MMP-9 (PEX) or controls (GST) for two weeks. These structurally diverse LRP1 ligands significantly activated and sustained extracellular signal-regulated kinases (ERK1/2) 5-fold (p<0.05), increased expression of growth-associated protein-43(GAP43) 15-fold (P<0.01), and increased neurite outgrowth 20-fold (P<0.01). Primary sensory neurons treated with LRP1 ligands survived > 2 weeks in vitro, to an extent equaling NGF, a finding associated with canonical signaling mechanisms and blockade of caspase-3 cleavage. LRP1 ligand-induced survival and sprouting were blocked by co-incubation with the LRP1 antagonist, receptor associated protein (RAP), whereas RAP had no effect on NGF-induced activity. Site directed mutagenesis of the LRP1 ligand, RBD, in which Lys1370 and Lys1374 are converted to alanine to preclude LRP1 binding, were ineffective in promoting cell signaling, survival or inducing neurite extension in primary sensory neurons, confirming LRP1 specificity. Furthermore, LRP1-induced neurite sprouting was mediated by Src-family kinase (SFK) activation, suggesting transactivation of Trk receptors. Co-cultures of primary embryonic neurons and Schwann cells showed that LRP1 agonists promoted axonal receptivity to myelination to Schwann cells. Collectively, these findings identify LRP1 as a novel and perhaps essential trophic molecule for sensory neuronal survival and development.
Journal of Biomedical Materials Research Part A | 2017
Dena Shahriari; Masataka Shibayama; Daniel Lynam; Kayle J. Wolf; Go Kubota; Jacob Koffler; Mark H. Tuszynski; Wendy M. Campana; Jeff Sakamoto
Nerve repair in several mm-long nerve gaps often requires an interventional technology. Microchannel scaffolds have proven effective for bridging nerve gaps and guiding axons in the peripheral nervous system (PNS). Nonetheless, fabricating microchannel scaffolds at this length scale remains a challenge and/or is time consuming and cumbersome. In this work, a simple computer-aided microdrilling technique was used to fabricate 10 mm-long agarose scaffolds consisting of 300 µm-microchannels and 85 µm-thick walls in less than an hour. The agarose scaffolds alone, however, did not exhibit adequate stiffness and integrity to withstand the mechanical stresses during implantation and suturing. To provide mechanical support and enable suturing, poly caprolactone (PCL) conduits were fabricated and agarose scaffolds were placed inside. A modified salt-leaching technique was developed to introduce interconnected porosity in PCL conduits to allow for tuning of the mechanical properties such as elastic modulus and strain to failure. It was shown that the PCL conduits were effective in stabilizing the agarose scaffolds in 10 mm-long sciatic nerve gaps of rats for at least 8 weeks. Robust axon ingress and Schwann cell penetration were observed within the microchannel scaffolds without using growth factors.
Blood | 2017
Elisabetta Mantuano; Pardis Azmoon; Coralie Brifault; Michael A. Banki; Andrew S. Gilder; Wendy M. Campana; Steven L. Gonias
Tissue-type plasminogen activator (tPA) is the major intravascular activator of fibrinolysis and a ligand for receptors involved in cell signaling. In cultured macrophages, tPA inhibits the response to lipopolysaccharide (LPS) by a pathway that apparently requires low-density lipoprotein receptor-related protein-1 (LRP1). Herein, we show that the mechanism by which tPA neutralizes LPS involves rapid reversal of IκBα phosphorylation. tPA independently induced transient IκBα phosphorylation and extracellular signal-regulated kinase 1/2 (ERK1/2) activation in macrophages; however, these events did not trigger inflammatory mediator expression. The tPA signaling response was distinguished from the signature of signaling events elicited by proinflammatory LRP1 ligands, such as receptor-associated protein (RAP), which included sustained IκBα phosphorylation and activation of all 3 MAP kinases (ERK1/2, c-Jun kinase, and p38 MAP kinase). Enzymatically active and inactive tPA demonstrated similar immune modulatory activity. Intravascular administration of enzymatically inactive tPA in mice blocked the toxicity of LPS. In mice not treated with exogenous tPA, the plasma concentration of endogenous tPA increased 3-fold in response to LPS, to 116 ± 15 pM, but remained below the approximate threshold for eliciting anti-inflammatory cell signaling in macrophages (∼2.0 nM). This threshold is readily achieved in patients when tPA is administered therapeutically for stroke. In addition to LRP1, we demonstrate that the N-methyl-D-aspartic acid receptor (NMDA-R) is expressed by macrophages and essential for anti-inflammatory cell signaling and regulation of cytokine expression by tPA. The NMDA-R and Toll-like receptor-4 were not required for proinflammatory RAP signaling. By mediating the tPA response in macrophages, the NMDA-R provides a pathway by which the fibrinolysis system may regulate innate immunity.
The FASEB Journal | 2017
Wendy M. Campana; Elisabetta Mantuano; Pardis Azmoon; Kenneth Henry; Michael A. Banki; John Kim; Donald P. Pizzo; Steven L. Gonias
In the peripheral nervous system, Schwann cells (SCs) demonstrate surveillance activity, detecting injury and undergoing trans‐differentiation to support repair. SC receptors that detect peripheral nervous system injury remain incompletely understood. We used RT‐PCR to profile ionotropic glutamate receptor expression in cultured SCs. We identified subunits required for assembly of N‐methyl‐D‐aspartic acid (NMDA) receptors (NMDA‐Rs), α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptors, and kainate receptors. Treatment of SCs with 40–100 μM glutamate or with 0.5–1.0 μM NMDA robustly activated Akt and ERK1/2. The response was transient and bimodal; glutamate concentrations that exceeded 250 μM failed to activate cell signaling. Phosphoprotein profiling identified diverse phosphorylated proteins in glutamate‐treated SCs in addition to ERK1/2 and Akt, including p70 S6‐kinase, glycogen synthase kinase‐3, ribosomal S6 kinase, c‐Jun, and cAMP response element binding protein. Activation of SC signaling by glutamate was blocked by EGTA and dizocilpine and by silencing expression of the NMDA‐R NR1 subunit. Phosphoinositide 3‐kinase/PI3K functioned as an essential upstream activator of Akt and ERK1/2 in glutamate‐treated SCs. When glutamate or NMDA was injected directly into crush‐injured rat sciatic nerves, ERK1/2 phosphorylation was observed in myelinated and nonmyelinating SCs. Glutamate promoted SC migration by a pathway that required PI3K and ERK1/2. These results identified ionotropic glutamate receptors and NMDA‐Rs, specifically, as potentially important cell signaling receptors in SCs. —Campana, W. M., Mantuano, E., Azmoon, P., Henry, K., Banki, M. A., Kim, J. H., Pizzo, D. P., Gonias, S. L. Ionotropic glutamate receptors activate cell signaling in response to glutamate in Schwann cells. FASEB J. 31, 1744–1755 (2017) www.fasebj.org