Wendy N. Jefferson
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wendy N. Jefferson.
Frontiers in Neuroendocrinology | 2010
Heather B. Patisaul; Wendy N. Jefferson
Phytoestrogens are plant derived compounds found in a wide variety of foods, most notably soy. A litany of health benefits including a lowered risk of osteoporosis, heart disease, breast cancer, and menopausal symptoms, are frequently attributed to phytoestrogens but many are also considered endocrine disruptors, indicating that they have the potential to cause adverse health effects as well. Consequently, the question of whether or not phytoestrogens are beneficial or harmful to human health remains unresolved. The answer is likely complex and may depend on age, health status, and even the presence or absence of specific gut microflora. Clarity on this issue is needed because global consumption is rapidly increasing. Phytoestrogens are present in numerous dietary supplements and widely marketed as a natural alternative to estrogen replacement therapy. Soy infant formula now constitutes up to a third of the US market, and soy protein is now added to many processed foods. As weak estrogen agonists/antagonists with molecular and cellular properties similar to synthetic endocrine disruptors such as Bisphenol A (BPA), the phytoestrogens provide a useful model to comprehensively investigate the biological impact of endocrine disruptors in general. This review weighs the evidence for and against the purported health benefits and adverse effects of phytoestrogens.
Biology of Reproduction | 2000
Wendy N. Jefferson; John F. Couse; Elizabeth Padilla Banks; Kenneth S. Korach; Retha R. Newbold
Abstract By the use of ribonuclease protection assay (RPA) combined with immunohistochemical techniques, the expression of estrogen receptor (ER) α and ERβ was mapped in the developing gonads and reproductive tracts of male and female mice from fetal day 14 to postnatal day 26 (PND 26). This study was designed to determine the pattern of expression of both ER subtypes in specific tissue compartments during development. In ovaries, ERα mRNA was detected at all ages examined; ERβ mRNA was seen as early as PND 1, and its expression increased with age. Immunolocalization showed ERβ in differentiating granulosa cells of the ovary, whereas ERα was predominantly seen in interstitial cells. The remainder of the female reproductive tract showed ERα mRNA at all ages examined with little or no significant levels of ERβ, except on PND 1 when a low level of message appeared. In males, ERα and ERβ mRNA were detected in the fetal testis; however, ERβ gradually increased until PND 5 and subsequently diminished to undetectable levels by PND 26. Immunolocalization showed ERα in the interstitial compartment of the testis, whereas ERβ was seen predominantly in developing spermatogonia. The remainder of the male reproductive tract showed varying amounts of both receptors by RPA and immunostaining throughout development. These studies provide information useful in studying the role of both ER subtypes in normal differentiation, and they provide indications of differential tissue expression during development.
Biology of Reproduction | 2002
Wendy N. Jefferson; John F. Couse; Elizabeth Padilla-Banks; Kenneth S. Korach; Retha R. Newbold
Abstract Outbred CD-1 mice were treated neonatally on Days 1–5 with the phytoestrogen, genistein (1, 10, or 100 μg per pup per day), and ovaries were collected on Days 5, 12, and 19. Ribonuclease protection assay analysis of ovarian mRNA showed that estrogen receptor β (ERβ) predominated over ERα in controls and increased with age. Genistein treatment did not alter ERβ expression, however, ERα expression was higher on Days 5 and 12. ERβ was immunolocalized in granulosa cells, whereas ERα was immunolocalized in interstitial and thecal cells. Genistein treatment caused a dramatic increase in ERα in granulosa cells. Genistein-treated ERβ knockout mice showed a similar induction of ERα, which is seen in CD-1 mice, suggesting that ERβ does not mediate this effect. Similar ERα induction in granulosa cells was seen in CD-1 mice treated with lavendustin A, a tyrosine kinase inhibitor that has no known estrogenic actions, which suggests that this property of genistein may be responsible. As a functional analysis, genistein-treated mice were superovulated and the number of oocytes was counted. A statistically significant increase in the number of ovulated oocytes was observed with the lowest dose, whereas a decrease was observed with the two higher doses. This increase in ovulatory capacity with the low dose coincided with higher ERα expression. Histological evaluations on Day 19 revealed a dose-related increase in multioocyte follicles (MOFs) in genistein-treated mice. Tyrosine kinase inhibition was apparently not responsible for MOFs because they were not present in mice that had been treated with lavendustin; however, ERβ must play a role, because mice lacking ERβ showed no MOFs. These data taken together demonstrate alterations in the ovary following neonatal exposure to genistein. Given that human infants are exposed to high levels of genistein in soy-based foods, this study indicates that the effects of such exposure on the developing reproductive tract warrant further investigation.
Environmental Health Perspectives | 2009
Retha R. Newbold; Wendy N. Jefferson; Elizabeth Padilla-Banks
Background Exposure to endocrine-disrupting chemicals during critical developmental periods causes adverse consequences later in life; an example is prenatal exposure to the pharmaceutical diethylstilbestrol (DES). Bisphenol A (BPA), an environmental estrogen used in the synthesis of plastics, is of concern because its chemical structure resembles that of DES, and it is a “high-volume production” chemical with widespread human exposure. Objectives In this study we investigated whether prenatal BPA causes long-term adverse effects in female reproductive tissues in an experimental animal model previously shown useful in studying effects of prenatal DES. Methods Timed pregnant CD-1 mice were treated on days 9–16 of gestation with BPA (0.1, 1, 10, 100, or 1,000 μg/kg/day). After delivery, pups were held for 18 months; reproductive tissues were then evaluated. Results Ovarian cysts were significantly increased in the 1-μg/kg BPA group; ovarian cyst-adenomas were seen in the other three BPA-treated groups but not in corn-oil controls. We observed increased progressive proliferative lesions of the oviduct after BPA treatment, similar to those described in response to DES. Further, although not statistically different from the controls, prominent mesonephric (Wolffian) remnants and squamous metaplasia of the uterus, as well as vaginal adenosis, were present in BPA-treated mice, similar to lesions reported following DES treatment. More severe pathologies observed in some BPA-treated animals included atypical hyperplasia and stromal polyps of the uterus; sarcoma of the uterine cervix; and mammary adenocarcinoma. We did not observe these lesions in controls. Conclusions These data suggest that BPA causes long-term adverse reproductive and carcinogenic effects if exposure occurs during critical periods of differentiation.
Biology of Reproduction | 2006
Wendy N. Jefferson; Retha R. Newbold; Elizabeth Padilla-Banks; Melissa E. Pepling
Abstract Early in ovarian differentiation, female mouse germ cells develop in clusters called oocyte nests or germline cysts. After birth, mouse germ cell nests break down into individual oocytes that are surrounded by somatic pregranulosa cells to form primordial follicles. Previously, we have shown that mice treated neonatally with genistein, the primary soy phytoestrogen, have multi-oocyte follicles (MOFs), an effect apparently mediated by estrogen receptor 2 (ESR2, more commonly known as ERbeta). To determine if genistein treatment leads to MOFs by inhibiting breakdown of oocyte nests, mice were treated neonatally with genistein (50 mg/kg per day) on Days 1–5, and the differentiation of the ovary was compared with untreated controls. Mice treated with genistein had fewer single oocytes and a higher percentage of oocytes not enclosed in follicles. Oocytes from genistein-treated mice exhibited intercellular bridges at 4 days of age, long after disappearing in controls by 2 days of age. There was also an increase in the number of oocytes that survived during the nest breakdown period and fewer oocytes undergoing apoptosis on Neonatal Day 3 in genistein-treated mice as determined by poly (ADP-ribose) polymerase (PARP1) and deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end-labeling (TUNEL). These data taken together suggest that genistein exposure during development alters ovarian differentiation by inhibiting oocyte nest breakdown and attenuating oocyte cell death.
Biology of Reproduction | 2009
Heather B. Adewale; Wendy N. Jefferson; Retha R. Newbold; Heather B. Patisaul
Developmental exposure to endocrine-disrupting compounds is hypothesized to adversely affect female reproductive physiology by interfering with the organization of the hypothalamic-pituitary-gonadal axis. Here, we compared the effects of neonatal exposure to two environmentally relevant doses of the plastics component bisphenol-A (BPA; 50 μg/kg and 50 mg/kg) with the ESR1 (formerly known as ERalpha)-selective agonist 4,4′,4″-(4-propyl-[1H]pyrazole-1,3,5-triyl)trisphenol (PPT; 1 mg/kg) on the development of the female rat hypothalamus and ovary. An oil vehicle and estradiol benzoate (EB; 25 μg) were used as negative and positive controls. Exposure to EB, PPT, or the low dose of BPA advanced pubertal onset. A total of 67% of females exposed to the high BPA dose were acyclic by 15 wk after vaginal opening compared with 14% of those exposed to the low BPA dose, all of the EB- and PPT-treated females, and none of the control animals. Ovaries from the EB-treated females were undersized and showed no evidence of folliculogenesis, whereas ovaries from the PPT-treated females were characterized by large antral-like follicles, which did not appear to support ovulation. Severity of deficits within the BPA-treated groups increased with dose and included large antral-like follicles and lower numbers of corpora lutea. Sexual receptivity, examined after ovariectomy and hormone replacement, was normal in all groups except those neonatally exposed to EB. FOS induction in hypothalamic gonadotropic (GnRH) neurons after hormone priming was impaired in the EB- and PPT-treated groups but neither of the BPA-treated groups. Our data suggest that BPA disrupts ovarian development but not the ability of GnRH neurons to respond to steroid-positive feedback.
Endocrinology | 2008
Wan yee Tang; Retha R. Newbold; Katerina Mardilovich; Wendy N. Jefferson; Robert Y.S. Cheng; Mario Medvedovic; Shuk-Mei Ho
Neonatal exposure of CD-1 mice to diethylstilbestrol (DES) or genistein (GEN) induces uterine adenocarcinoma in aging animals. Uterine carcinogenesis in this model is ovarian dependent because its evolution is blocked by prepubertal ovariectomy. This study seeks to discover novel uterine genes whose expression is altered by such early endocrine disruption via an epigenetic mechanism. Neonatal mice were treated with 1 or 1000 microg/kg DES, 50 mg/kg GEN, or oil (control) on d 1-5. One group of treated mice was killed before puberty on d 19. Others were ovariectomized or left intact, and killed at 6 and 18 months of age. Methylation-sensitive restriction fingerprinting was performed to identify differentially methylated sequences associated with neonatal exposure to DES/GEN. Among 14 candidates, nucleosomal binding protein 1 (Nsbp1), the gene for a nucleosome-core-particle binding protein, was selected for further study because of its central role in chromatin remodeling. In uteri of immature control mice, Nsbp1 promoter CpG island (CGI) was minimally methylated. Once control mice reached puberty, the Nsbp1 CGI became hypermethylated, and gene expression declined further. In contrast, in neonatal DES/GEN-treated mice, the Nsbp1 CGI stayed anomalously hypomethylated, and the gene exhibited persistent overexpression throughout life. However, if neonatal DES/GEN-treated mice were ovariectomized before puberty, the CGI remained minimally to moderately methylated, and gene expression was subdued except in the group treated with 1000 microg/kg DES. Thus, the life reprogramming of uterine Nsbp1 expression by neonatal DES/GEN exposure appears to be mediated by an epigenetic mechanism that interacts with ovarian hormones in adulthood.
Biology of Reproduction | 2005
Wendy N. Jefferson; Elizabeth Padilla-Banks; Retha R. Newbold
Abstract Outbred female CD-1 mice were treated with genistein (Gen), the primary phytoestrogen in soy, by s.c. injections on Neonatal Days 1–5 at doses of 0.5, 5, or 50 mg/kg per day (Gen-0.5, Gen-5, and Gen-50). The day of vaginal opening was observed in mice treated with Gen and compared with controls, and although there were some differences, they were not statistically significant. Gen-treated mice had prolonged estrous cycles with a dose- and age-related increase in severity of abnormal cycles. Females treated with Gen-0.5 or Gen-5 bred to control males at 2, 4, and 6 mo showed statistically significant decreases in the number of live pups over time with increasing dose; at 6 mo, 60% of the females in the Gen-0.5 group and 40% in the Gen-5 group delivered live pups compared with 100% of controls. Mice treated with Gen-50 did not deliver live pups. At 2 mo, >60% of the mice treated with Gen-50 were fertile as determined by uterine implantation sites, but pregnancy was not maintained; pregnancy loss was characterized by fewer, smaller implantation sites and increased reabsorptions. Mice treated with lower doses of Gen had increased numbers of corpora lutea compared with controls, while mice treated with the highest dose had decreased numbers; however, superovulation with eCG/hCG yielded similar numbers of oocytes as controls. Serum levels of progesterone, estradiol, and testosterone were similar between Gen-treated and control mice when measured before puberty and during pregnancy. In summary, neonatal treatment with Gen caused abnormal estrous cycles, altered ovarian function, early reproductive senescence, and subfertility/infertility at environmentally relevant doses.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Yi-Liang Miao; Paula Stein; Wendy N. Jefferson; Elizabeth Padilla-Banks; Carmen J. Williams
Mammalian fertilization is accompanied by oscillations in egg cytoplasmic calcium (Ca2+) concentrations that are critical for completion of egg activation. These oscillations are initiated by Ca2+ release from inositol 1,4,5-trisphosphate (IP3)-sensitive intracellular stores. We tested the hypothesis that Ca2+ influx across the plasma membrane was a requisite component of egg activation signaling, and not simply a Ca2+ source for store repletion. Using intracytoplasmic sperm injection (ICSI) and standard in vitro fertilization (IVF), we found that Ca2+ influx was not required to initiate resumption of meiosis II. However, even if multiple oscillations in intracellular Ca2+ occurred, in the absence of Ca2+ influx, the fertilized eggs failed to emit the second polar body, resulting in formation of three pronuclei. Additional experiments using the Ca2+ chelator, BAPTA/AM, demonstrated that Ca2+ influx is sufficient to support polar body emission and pronucleus formation after only a single sperm-induced Ca2+ transient, whereas BAPTA/AM-treated ICSI or fertilized eggs cultured in Ca2+-free medium remained arrested in metaphase II. Inhibition of store-operated Ca2+ entry had no effect on ICSI-induced egg activation, so Ca2+ influx through alternative channels must participate in egg activation signaling. Ca2+ influx appears to be upstream of CaMKIIγ activity because eggs can be parthenogenetically activated with a constitutively active form of CaMKIIγ in the absence of extracellular Ca2+. These results suggest that Ca2+ influx at fertilization not only maintains Ca2+ oscillations by replenishing Ca2+ stores, but also activates critical signaling pathways upstream of CaMKIIγ that are required for second polar body emission.
Environmental Health Perspectives | 2009
Wendy N. Jefferson; Daniel R. Doerge; Elizabeth Padilla-Banks; Kellie A. Woodling; Grace E. Kissling; Retha R. Newbold
Background Developmental exposure to environmental estrogens is associated with adverse consequences later in life. Exposure to genistin (GIN), the glycosylated form of the phytoestrogen genistein (GEN) found in soy products, is of concern because approximately 20% of U.S. infants are fed soy formula. High circulating levels of GEN have been measured in the serum of these infants, indicating that GIN is readily absorbed, hydrolyzed, and circulated. Objectives We investigated whether orally administered GIN is estrogenic in neonatal mice and whether it causes adverse effects on the developing female reproductive tract. Methods Female CD-1 mice were treated on postnatal days 1–5 with oral GIN (6.25, 12.5, 25, or 37.5 mg/kg/day; GEN-equivalent doses), oral GEN (25, 37.5, or 75 mg/kg/day), or subcutaneous GEN (12.5, 20, or 25 mg/kg/day). Estrogenic activity was measured on day 5 by determining uterine wet weight gain and induction of the estrogen-responsive gene lactoferrin. Vaginal opening, estrous cyclicity, fertility, and morphologic alterations in the ovary/reproductive tract were examined. Results Oral GIN elicited an estrogenic response in the neonatal uterus, whereas the response to oral GEN was much weaker. Oral GIN altered ovarian differentiation (i.e., multioocyte follicles), delayed vaginal opening, caused abnormal estrous cycles, decreased fertility, and delayed parturition. Conclusions Our results support the idea that the dose of the physiologically active compound reaching the target tissue, rather than the administered dose or route, is most important in modeling chemical exposures. This is particularly true with young animals in which phase II metabolism capacity is underdeveloped relative to adults.