Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenhao Zhang is active.

Publication


Featured researches published by Wenhao Zhang.


Chinese Physics Letters | 2012

Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO3

Qingyan Wang; Zhi Li; Wenhao Zhang; Zuocheng Zhang; Jinsong Zhang; Wei Li; Hao Ding; Yunbo Ou; Peng Deng; Kai Chang; Jing Wen; Can-Li Song; Ke He; Jin-Feng Jia; Shuai-Hua Ji; Yayu Wang; Lili Wang; Xi Chen; Xucun Ma; Qi-Kun Xue

We report high transition temperature superconductivity in one unit-cell (UC) thick FeSe films grown on a Se-etched SrTiO3 (001) substrate by molecular beam epitaxy (MBE). A superconducting gap as large as 20 meV and the magnetic field induced vortex state revealed by in situ scanning tunneling microscopy (STM) suggest that the superconductivity of the 1 UC FeSe films could occur around 77 K. The control transport measurement shows that the onset superconductivity temperature is well above 50 K. Our work not only demonstrates a powerful way for finding new superconductors and for raising TC, but also provides a well-defined platform for systematic studies of the mechanism of unconventional superconductivity by using different superconducting materials and substrates.


Nature Materials | 2013

Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films

Shaolong He; Junfeng He; Wenhao Zhang; Lin Zhao; Defa Liu; Xu Liu; Daixiang Mou; Yunbo Ou; Qingyan Wang; Zhi Li; Lili Wang; Yingying Peng; Yan Liu; Chaoyu Chen; Li Yu; Guodong Liu; Xiaoli Dong; Jun Zhang; Chuangtian Chen; Zuyan Xu; Xi Chen; Xucun Ma; Qi-Kun Xue; X. J. Zhou

Superconductivity in the cuprate superconductors and the Fe-based superconductors is realized by doping the parent compound with charge carriers, or by application of high pressure, to suppress the antiferromagnetic state. Such a rich phase diagram is important in understanding superconductivity mechanism and other physics in the Cuand Fe-based high temperature superconductors. In this paper, we report a phase diagram in the single-layer FeSe films grown on SrTiO3 substrate by an annealing procedure to tune the charge carrier concentration over a wide range. A dramatic change of the band structure and Fermi surface is observed, with two distinct phases identified that are competing during the annealing process. Superconductivity with a record high transition temperature (Tc) at 65±5 K is realized by optimizing the annealing process. The wide tunability of the system across different phases, and its high-Tc, make the single-layer FeSe film ideal not only to investigate the superconductivity physics and mechanism, but also to study novel quantum phenomena and for potential applications. 1 ar X iv :1 20 7. 68 23 v1 [ co nd -m at .s up rco n] 3 0 Ju l 2 01 2 In high temperature cuprate superconductors, superconductivity is realized by doping the parent Mott insulator with charge carriers to suppress the antiferromagnetic state[1]. In the process, the physical property experiences a dramatic change from antiferromagnetic insulator, to a superconductor and eventually to a non-superconducting normal metal. In the superconducting region, the transition temperature Tc can be tuned by the carrier concentration, initially going up with the increasing doping, reaching a maximum at an optimal doping, and then going down with further doping[1]. Such a rich evolution with doping not only provides a handle to tune the physical properties in a dramatic way, but also provides clues and constraints in understanding the origin of the high-Tc superconductivity. The same is true for the Fe-based superconductors where superconductivity is achieved by doping the parent magnetic compounds which are nevertheless metallic[2, 3]. Again, the superconducting transition temperature can be tuned over a wide doping range with an maximum Tc at the optimal doping. Understanding such a rich evolution is also a prerequisite in understanding the origin of high temperature superconductivity in the Fe-based superconductors. The latest discovery of high temperature superconductivity signature in the single-layer FeSe films[4, 5] is significant in a couple of respects. First, it may exhibit a high Tc that breaks the Tc record (∼55 K) in the Fe-based superconductors kept so far since 2008[6– 11]. Second, the discovery of such a high-Tc in the single-layer FeSe film is surprising when considering that its bulk counterpart has a Tc only at 8 K[9] although it can be enhanced to 36.7 K under high pressure[12]. Third, it provides an ideal system to investigate the origin of high temperature superconductivity. On the one hand, this system consists of a single-layer FeSe film that has a simple crystal structure and strictly two-dimensionality; its simple electronic structure may provide key insights on the high Tc superconductivity mechanism in the Fe-based compounds[5]. On the other hand, the unique properties of this system may involve the interface between the single-layer FeSe film and the SrTiO3 substrate that provides an opportunity to investigate the role of interface in generating high-Tc superconductivity[4]. Like in cuprates and other Fe-based superconductors, it is important to explore whether one can tune the single-layer FeSe system to vary its physical properties and superconductivity by changing the charge carrier concentration. In this paper, we report a wide range tunability of the electronic structure and physical properties that is realized in the single-The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.


Nature Communications | 2012

Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor

Defa Liu; Wenhao Zhang; Daixiang Mou; Junfeng He; Yunbo Ou; Qingyan Wang; Zhi Li; Lili Wang; Lin Zhao; Shaolong He; Yingying Peng; Xu Liu; Chaoyu Chen; Li Yu; Guodong Liu; Xiaoli Dong; Jun Zhang; Chuangtian Chen; Zuyan Xu; Jiang-Ping Hu; Xi Chen; Xucun Ma; Qi-Kun Xue; X. J. Zhou

The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.


Chinese Physics Letters | 2014

Direct Observation of High-Temperature Superconductivity in One-Unit-Cell FeSe Films

Wenhao Zhang; Yi Sun; Jinsong Zhang; F. Li; Minghua Guo; Yanfei Zhao; H. Zhang; J. Peng; Ying Xing; Huichao Wang; Takeshi Fujita; Akihiko Hirata; Zhi Li; Hao Ding; Chenjia Tang; Meng Wang; Qingyan Wang; Ke He; Shuai-Hua Ji; Xi Chen; Junfeng Wang; Zhengcai Xia; Liang Li; Yayu Wang; Jian Wang; Lili Wang; Mingwei Chen; Qi-Kun Xue; Xucun Ma

We prepared one-unit-cell (1-UC) thick FeSe films on insulating SrTiO3 substrates with non-superconducting FeTe protection layers by molecular beam epitaxy for ex situ studies. By direct transport and magnetic measurements, we provide definitive evidence for high temperature superconductivity in the 1-UC FeSe films with an onset TC above 40 K and an extremely large critical current density JC~1.7×106 A/cm2 at 2 K, which are much higher than TC~8 K and JC~104 A/cm2 for bulk FeSe, respectively. Our work may pave the way to enhancing and tailoring superconductivity by interface engineering.


Journal of Physics: Condensed Matter | 2013

Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates

Qingyan Wang; Wenhao Zhang; Lili Wang; Ke He; Xucun Ma; Qi-Kun Xue

We report on the preparation of large-scale uniform bilayer graphenes on nominally flat Si-polar 6H-SiC(0001) substrates by flash annealing in ultrahigh vacuum. The resulting graphenes have a single thickness of one bilayer and consist of regular terraces separated by the triple SiC bilayer steps on the 6H-SiC(0001) substrates. In situ scanning tunneling microscopy reveals that suppression of pit formation on terraces and uniformity of SiC decomposition at step edges are the key factors to the uniform thickness. By studying the surface morphologies prepared under different annealing rates, it is found that the annealing rate is directly related to SiC decomposition, diffusion of the released Si/C atoms and strain relaxation, which together determine the final step structure and density of defects.


Scientific Reports | 2015

High temperature superconducting FeSe films on SrTiO3 substrates

Yi Sun; Wenhao Zhang; Ying Xing; F. Li; Yanfei Zhao; Zhengcai Xia; Lili Wang; Xucun Ma; Qi-Kun Xue; Jian Wang

Interface enhanced superconductivity at two dimensional limit has become one of most intriguing research directions in condensed matter physics. Here, we report the superconducting properties of ultra-thin FeSe films with the thickness of one unit cell (1-UC) grown on conductive and insulating SrTiO3 (STO) substrates. For the 1-UC FeSe on conductive STO substrate (Nb-STO), the magnetization versus temperature (M-T) measurement shows a drop crossover around 85 K. For the FeSe films on insulating STO substrate, systematic transport measurements were carried out and the sheet resistance of FeSe films exhibits Arrhenius TAFF behavior with a crossover from a single-vortex pinning region to a collective creep region. More intriguing, sign reversal of Hall resistance with temperature is observed, demonstrating a crossover from hole conduction to electron conduction above TC in 1-UC FeSe films.


Applied Physics Letters | 2013

Superconductivity in Ca-intercalated epitaxial graphene on silicon carbide

Kang Li; Xiao Feng; Wenhao Zhang; Yunbo Ou; Lianlian Chen; Ke He; Lili Wang; Liwei Guo; Guodong Liu; Qi-Kun Xue; Xucun Ma

We have prepared Ca-intercalated multilayer epitaxial graphene films on silicon carbide and observed superconductivity in them with both magnetic and transport measurements. Superconducting transition has been detected at temperature up to 7 K in Ca-intercalated epitaxial graphene with the thickness down to 10 layers grown on both Si-face and C-face of silicon carbide. The result demonstrates intercalated epitaxial graphene as a good platform to study graphene-based superconductivity.


Nature Communications | 2014

Dichotomy of the electronic structure and superconductivity between single-layer and double-layer FeSe/SrTiO3 films

Xu Liu; Defa Liu; Wenhao Zhang; Junfeng He; Lin Zhao; Shaolong He; Daixiang Mou; F. Li; Chenjia Tang; Zhi Li; Lili Wang; Yingying Peng; Yan Liu; Chaoyu Chen; Liang Yu; Guodong Liu; Xiaoli Dong; Jun Zhang; Chuangtian Chen; Zuyan Xu; Xi Chen; Xucun Ma; Qi-Kun Xue; X. J. Zhou

The latest discovery of possible high-temperature superconductivity in the single-layer FeSe film grown on a SrTiO3 substrate has generated much attention. Initial work found that, while the single-layer FeSe/SrTiO3 film exhibits a clear signature of superconductivity, the double-layer film shows an insulating behaviour. Such a marked layer-dependent difference is surprising and the underlying origin remains unclear. Here we report a comparative angle-resolved photoemission study between the single-layer and double-layer FeSe/SrTiO3 films annealed in vacuum. We find that, different from the single-layer FeSe/SrTiO3 film, the double-layer FeSe/SrTiO3 film is hard to get doped and remains in the semiconducting/insulating state under an extensive annealing condition. Such a behaviour originates from the much reduced doping efficiency in the bottom FeSe layer of the double-layer FeSe/SrTiO3 film from the FeSe-SrTiO3 interface. These observations provide key insights in understanding the doping mechanism and the origin of superconductivity in the FeSe/SrTiO3 films.


Journal of Physics: Condensed Matter | 2014

Molecular beam epitaxy growth and post-growth annealing of FeSe films on SrTiO3: a scanning tunneling microscopy study.

Zhi Li; J. Peng; H. Zhang; Wenhao Zhang; Hao Ding; Peng Deng; Kai Chang; Can-Li Song; Shuai-Hua Ji; Lili Wang; Ke He; Xi Chen; Qi-Kun Xue; Xucun Ma

Low temperature scanning tunneling microscopy and spectroscopy are used to investigate the atomic and electronic structure evolution of FeSe films grown on SrTiO3 as a function of post-growth annealing. Single unit cell FeSe films are found to bond strongly with the underlying substrate, and become superconductive with diminishing chemical bond disorders at the interface via post-annealing. For thicker FeSe films, post-annealing removes excess Se in the films and leads to a transition from semiconductor into metallic behaviors. In double and multilayer films, strain-induced complex textures are observed and suggested to be the main cause for the absent superconductivity.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Electronic evidence of an insulator–superconductor crossover in single-layer FeSe/SrTiO3 films

Junfeng He; Xu Liu; Wenhao Zhang; Lin Zhao; Defa Liu; Shaolong He; Daixiang Mou; F. Li; Chenjia Tang; Zhi Li; Lili Wang; Yingying Peng; Yan Liu; Chaoyu Chen; Li Yu; Guodong Liu; Xiaoli Dong; Jun Zhang; Chuangtian Chen; Zuyan Xu; Xi Chen; Xucun Ma; Qi-Kun Xue; X. J. Zhou

Significance The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. However, in the iron-based superconductors, no evidence of doping-induced insulator–superconductor transition (or crossover) has been reported so far. In this paper, to our knowledge, we report the first electronic evidence of an insulator–superconductor crossover observed in the single-layer FeSe film grown on a SrTiO3 substrate, which exhibits similar behaviors to that observed in the cuprate superconductors. The observed insulator–superconductor crossover may be associated with the two-dimensionality that enhances electron localization or correlation. The reduced dimensionality and the interfacial effect provide a new pathway in searching for new phenomena and novel superconductors with a high transition temperature. In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic bad metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. No evidence of doping-induced insulator–superconductor transition (or crossover) has been reported in the iron-based compounds so far. Here, we report an electronic evidence of an insulator–superconductor crossover observed in the single-layer FeSe film grown on a SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with increasing carrier concentration. In particular, the insulator–superconductor crossover in FeSe/SrTiO3 film exhibits similar behaviors to that observed in the cuprate superconductors. Our results suggest that the observed insulator–superconductor crossover may be associated with the two-dimensionality that enhances electron localization or correlation. The reduced dimensionality and the interfacial effect provide a new pathway in searching for new phenomena and novel superconductors with a high transition temperature.

Collaboration


Dive into the Wenhao Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lili Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhi Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

F. Li

Tsinghua University

View shared research outputs
Top Co-Authors

Avatar

Xu Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chuangtian Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Defa Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guodong Liu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge