Wenhua Lang
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wenhua Lang.
Cancer Research | 2006
Jun Zhang; Hening Ren; Ping Yuan; Wenhua Lang; Li Zhang; Li Mao
We recently reported that a high level of hepatoma-derived growth factor (HDGF) expression in tumors correlates with a high incidence of tumor relapse or distant metastasis and shortened survival time in patients with non-small cell lung cancer (NSCLC). However, the mechanisms of the HDGF-associated aggressive biological behavior are unknown. In this study, we knocked down HDGF expression in NSCLC cells to determine the biological consequences. Transfection with HDGF-specific small interfering RNA (siRNA) resulted in down-regulation of HDGF expression in four NSCLC cell lines. Down-regulation of HDGF resulted in no detectable effect on anchorage-dependent cell growth as determined with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, a microelectronic cell sensor system, and flow cytometry. In contrast, cells transfected with HDGF-siRNA grew more slowly and formed significantly fewer colonies in soft agar than did cells treated with LipofectAMINE alone or transfected with negative control siRNA. In an in vitro invasion assay, significantly fewer cells transfected with HDGF-siRNA than cells treated with LipofectAMINE alone were able to invade across a Matrigel membrane barrier. In an in vivo mouse model, A549 cells treated with HDGF-siRNA grown significantly slower than the cells treated with LipofectAMINE alone or negative control siRNA. Morphologically, HDGF-siRNA-treated tumors exhibited markedly reduced blood vessel formation and increased necrosis, whereas the Ki67 labeling indices were similar in tumors treated with controls. Our results suggest that HDGF is involved in anchorage-independent growth, cell invasion, and formation of neovasculature of NSCLC. These qualities may contribute to the HDGF-associated aggressive biological behavior of NSCLC.
Cancer Research | 2007
Jie Wang; Manisha Bhutani; Ashutosh K. Pathak; Wenhua Lang; Hening Ren; Jaroslav Jelinek; Rong He; Lanlan Shen; Jean-Pierre Issa; Li Mao
DNA methyltransferase 3B (DNMT3B) is critical in de novo DNA methylation during development and tumorigenesis. We recently reported the identification of a DNMT3B subfamily, DeltaDNMT3B, which contains at least seven variants, resulting from alternative pre-mRNA splicing. DeltaDNMT3Bs are the predominant expression forms of DNMT3B in human lung cancer. A strong correlation was observed between the promoter methylation of RASSF1A gene but not p16 gene (both frequently inactivated by promoter methylation in lung cancer) and expression of DeltaDNMT3B4 in primary lung cancer, suggesting a role of DeltaDNMT3B in regulating promoter-specific methylation of common tumor suppressor genes in tumorigenesis. In this report, we provide first experimental evidence showing a direct involvement of DeltaDNMT3B4 in regulating RASSF1A promoter methylation in human lung cancer cells. Knockdown of DeltaDNMT3B4 expression by small interfering RNA resulted in a rapid demethylation of RASSF1A promoter and reexpression of RASSF1A mRNA but had no effect on p16 promoter in the lung cancer cells. Conversely, normal bronchial epithelial cells with stably transfected DeltaDNMT3B4 gained an increased DNA methylation in RASSF1A promoter but not p16 promoter. We conclude that promoter DNA methylation can be differentially regulated and DeltaDNMT3Bs are involved in regulation of such promoter-specific de novo DNA methylation.
Cancer Prevention Research | 2013
Humam Kadara; Li Shen; Junya Fujimoto; Pierre Saintigny; Chi Wan Chow; Wenhua Lang; Zuoming Chu; Melinda M. Garcia; Mohamed Kabbout; You Hong Fan; Carmen Behrens; Diane A. Liu; Li Mao; J. Jack Lee; Kathryn A. Gold; Jing Wang; Kevin R. Coombes; Edward S. Kim; Waun Ki Hong; Ignacio I. Wistuba
Gene expression alterations in response to cigarette smoke have been characterized in normal-appearing bronchial epithelium of healthy smokers, and it has been suggested that adjacent histologically normal tissue displays tumor-associated molecular abnormalities. We sought to delineate the spatial and temporal molecular lung field of injury in smoker patients with early-stage non–small cell lung cancer (NSCLC; n = 19) who were accrued into a surveillance clinical trial for annual follow-up and bronchoscopies within 1 year after definitive surgery. Bronchial brushings and biopsies were obtained from six different sites in the lung at the time of inclusion in the study and at 12, 24, and 36 months after the first time point. Affymetrix Human Gene 1.0 ST arrays were used for whole-transcript expression profiling of airways (n = 391). Microarray analysis identified gene features (n = 1,165) that were nonuniform by site and differentially expressed between airways adjacent to tumors relative to more distant samples as well as those (n = 1,395) that were significantly altered with time up to 3 years. In addition, gene interaction networks mediated by phosphoinositide 3-kinase (PI3K) and extracellular signal–regulated kinase (ERK)1/2 were modulated in adjacent compared with contralateral airways and the latter network with time. Furthermore, phosphorylated AKT and ERK1/2 immunohistochemical expression were significantly increased with time (nuclear pAKT, P = 0.03; cytoplasmic pAKT, P < 0.0001; pERK1/2, P = 0.02) and elevated in adjacent compared with more distant airways (nuclear pAKT, P = 0.04; pERK1/2, P = 0.03). This study highlights spatial and temporal cancer–associated expression alterations in the molecular field of injury of patients with early-stage NSCLCs after definitive surgery that warrant further validation in independent studies. Cancer Prev Res; 6(1); 8–17. ©2012 AACR.
Pathobiology | 2006
Francisco Vega; Kevin R. Coombes; Vilmos Thomazy; Kaushali A. Patel; Wenhua Lang; Dan Jones
Objective: We present the first characterization of the cytokine expression pattern of lymph node fibroblastic reticulum cells (FRC), which are the stromal cells responsible for maintaining the highly structured nodal reticular fiber framework. Methods: Microarray expression profiles of cultured nodal FRC and dermal fibroblasts (DF) were compared as well as their response to TNF, IL-4, IL-6 and IL-13, cytokines responsible for intranodal stromal activation. Results: Hierarchical clustering of FRC and DF short-term culture samples revealed genes that were differentially expressed in FRC and DF. Identified differently regulated genes were confirmed by RNase protection analysis, PCR or immunohistochemistry. At earlier culture time points, FRC showed higher levels of several chemokines, including CCL2/MCP-1, and cytokines, e.g. IL-6, whereas several genes related to the production of extracellular matrix and angiogenesis were preferentially expressed in early DF cultures. By 60 days in culture, FRC and DF showed similar expression patterns consistent with homogenization of specialized stromal subsets. FRC and DF showed nearly identical transcriptional responses to exogenous TNF stimulation. Conclusions: Cultured FRC showed an overall transcriptional profile similar to cultured DF, including parallel responsiveness to TNF, but with differences in the expression of chemotactic chemokines, which reflect their biological roles.
Cancer Prevention Research | 2015
Jean Philippe Foy; Curtis R. Pickering; Vassiliki Papadimitrakopoulou; Jaroslav Jelinek; Steven H. Lin; William N. William; Mitchell J. Frederick; Jing Wang; Wenhua Lang; Lei Feng; Li Zhang; Edward S. Kim; You H. Fan; Waun Ki Hong; Adel K. El-Naggar; J. Jack Lee; Jeffrey N. Myers; Jean-Pierre Issa; Scott M. Lippman; Li Mao; Pierre Saintigny
DNA promoter methylation of tumor suppressor genes and global DNA hypomethylation are common features of head and neck cancers. Our goal was to identify early DNA methylation changes in oral premalignant lesions (OPL) that may serve as predictive markers of developing oral squamous cell carcinoma (OSCC). Using high-throughput DNA methylation profiles of 24 OPLs, we found that the top 86 genes differentially methylated between patients who did or did not develop OSCC were simultaneously hypermethylated, suggesting that a CpG island methylation phenotype may occur early during OSCC development. The vast majority of the 86 genes were nonmethylated in normal tissues and hypermethylated in OSCC versus normal mucosa. We used pyrosequencing in a validation cohort of 44 patients to evaluate the degree of methylation of AGTR1, FOXI2, and PENK promoters CpG sites that were included in the top 86 genes and of LINE1 repetitive element methylation, a surrogate of global DNA methylation. A methylation index was developed by averaging the percent methylation of AGTR1, FOXI2, and PENK promoters; patients with a high methylation index had a worse oral cancer–free survival (P = 0.0030). On the other hand, patients with low levels of LINE1 methylation had a significantly worse oral cancer–free survival (P = 0.0153). In conclusion, AGTR1, FOXI2, and PENK promoter methylation and LINE1 hypomethylation may be associated with an increased risk of OSCC development in patients with OPLs. Cancer Prev Res; 8(11); 1027–35. ©2015 AACR.
Oncotarget | 2016
Jean Philippe Foy; Antonin Tortereau; Carlos Caulin; Vincent Le Texier; Emilie Lavergne; Emilie Thomas; Sylvie Chabaud; David Pérol; Joël Lachuer; Wenhua Lang; Waun Ki Hong; Patrick Goudot; Scott M. Lippman; Chloé Bertolus; Pierre Saintigny
A better understanding of the dynamics of molecular changes occurring during the early stages of oral tumorigenesis may help refine prevention and treatment strategies. We generated genome-wide expression profiles of microdissected normal mucosa, hyperplasia, dysplasia and tumors derived from the 4-NQO mouse model of oral tumorigenesis. Genes differentially expressed between tumor and normal mucosa defined the “tumor gene set” (TGS), including 4 non-overlapping gene subsets that characterize the dynamics of gene expression changes through different stages of disease progression. The majority of gene expression changes occurred early or progressively. The relevance of these mouse gene sets to human disease was tested in multiple datasets including the TCGA and the Genomics of Drug Sensitivity in Cancer project. The TGS was able to discriminate oral squamous cell carcinoma (OSCC) from normal oral mucosa in 3 independent datasets. The OSCC samples enriched in the mouse TGS displayed high frequency of CASP8 mutations, 11q13.3 amplifications and low frequency of PIK3CA mutations. Early changes observed in the 4-NQO model were associated with a trend toward a shorter oral cancer-free survival in patients with oral preneoplasia that was not seen in multivariate analysis. Progressive changes observed in the 4-NQO model were associated with an increased sensitivity to 4 different MEK inhibitors in a panel of 51 squamous cell carcinoma cell lines of the aerodigestive tract. In conclusion, the dynamics of molecular changes in the 4-NQO model reveal that MEK inhibition may be relevant to prevention and treatment of a specific molecularly-defined subgroup of OSCC.
Cancer Research | 2016
Yasminka Jakubek; Wenhua Lang; Selina Vattathil; Melinda M. Garcia; Li Xu; Lili Huang; Suk Young Yoo; Li Shen; Wei Lu; Chi Wan Chow; Zachary Weber; Gareth E. Davies; Jing Huang; Carmen Behrens; Neda Kalhor; Cesar A. Moran; Junya Fujimoto; Reza J. Mehran; Randa El-Zein; Stephen G. Swisher; Jing Wang; Jerry Fowler; Avrum Spira; Erik A. Ehli; Ignacio I. Wistuba; Paul Scheet; Humam Kadara
Visually normal cells adjacent to, and extending from, tumors of the lung may carry molecular alterations characteristics of the tumor itself, an effect referred to as airway field of cancerization. This airway field has been postulated as a model for early events in lung cancer pathogenesis. Yet the genomic landscape of somatically acquired molecular alterations in airway epithelia of lung cancer patients has remained unknown. To begin to fill this void, we sought to comprehensively characterize the genomic architecture of chromosomal alterations inducing allelic imbalance (AI) in the airway field of the most common type of lung tumors, non-small cell lung cancer (NSCLC). To do so, we conducted a genome-wide survey of multiple spatially distributed normal-appearing airways, multiregion tumor specimens, and uninvolved normal tissues or blood from 45 patients with early-stage NSCLC. We detected alterations in airway epithelia from 22 patients, with an increased frequency in NSCLCs of squamous histology. Our data also indicated a spatial gradient of AI in samples at closer proximity to the NSCLC. Chromosome 9 displayed the highest levels of AI and comprised recurrent independent events. Furthermore, the airway field AI included oncogenic gains and tumor suppressor losses in known NSCLC drivers. Our results demonstrate that genome-wide AI is common in the airway field of cancerization, providing insights into early events in the pathogenesis of NSCLC that may comprise targets for early treatment and chemoprevention. Cancer Res; 76(13); 3676-83. ©2016 AACR.
Cancer Research | 2017
Smruthy Sivakumar; F. Anthony San Lucas; Tina McDowell; Wenhua Lang; Li Xu; Junya Fujimoto; Jianjun Zhang; P. Andrew Futreal; Junya Fukuoka; Yasushi Yatabe; Steven M. Dubinett; Avrum Spira; Jerry Fowler; Ernest T. Hawk; Ignacio I. Wistuba; Paul Scheet; Humam Kadara
There is a dearth of knowledge about the pathogenesis of premalignant lung lesions, especially for atypical adenomatous hyperplasia (AAH), the only known precursor for the major lung cancer subtype adenocarcinoma (LUAD). In this study, we performed deep DNA and RNA sequencing analyses of a set of AAH, LUAD, and normal tissues. Somatic BRAF variants were found in AAHs from 5 of 22 (23%) patients, 4 of 5 of whom had matched LUAD with driver EGFR mutations. KRAS mutations were present in AAHs from 4 of 22 (18%) of patients. KRAS mutations in AAH were only found in ever-smokers and were exclusive to BRAF-mutant cases. Integrative analysis revealed profiles expressed in KRAS-mutant cases (UBE2C, REL) and BRAF-mutant cases (MAX) of AAH, or common to both sets of cases (suppressed AXL). Gene sets associated with suppressed antitumor (Th1; IL12A, GZMB) and elevated protumor (CCR2, CTLA-4) immune signaling were enriched in AAH development and progression. Our results reveal potentially divergent BRAF or KRAS pathways in AAH as well as immune dysregulation in the pathogenesis of this premalignant lung lesion. Cancer Res; 77(22); 6119-30. ©2017 AACR.
Scientific Reports | 2015
Yuho Maki; Junya Fujimoto; Wenhua Lang; Li Xu; Carmen Behrens; Ignacio I. Wistuba; Humam Kadara
We recently demonstrated that lysosomal protein transmembrane 4 beta (LAPTM4B) is elevated in non-small cell lung cancers (NSCLCs) and in the surrounding premalignant airway field of cancerization. In the present study, we sought to begin to understand the relevance of LAPTM4B expression and signaling to NSCLC pathogenesis. In situ hybridization analysis of LAPTM4B transcript in tissue microarrays comprised of 368 NSCLCs demonstrated that LAPTM4B expression was significantly increased in smoker compared to non-smoker lung adenocarcinoma tumors (P < 0.001) and was significantly associated with poor overall survival (P < 0.05) in adenocarcinoma patients. Knockdown of LAPTM4B expression inhibited cell growth, induced cellular apoptosis and decreased cellular autophagy in serum starved lung cancer cells. Expression profiling coupled with pathways analysis revealed decreased activation of the nuclear factor erythroid 2-like 2 (NRF2) stress response pathway following LAPTM4B knockdown. Further analysis demonstrated that LAPTM4B augmented the expression and nuclear translocation of the NRF2 transcription factor following serum deprivation as well as increased the expression of NRF2 target genes such as heme oxygenase 1/HMOX1). Our study points to the relevance of LAPTM4B expression to NSCLC pathogenesis as well as to the probable role of LAPTM4B/NRF2 signaling in promoting lung cancer cell survival.
International Journal of Cancer | 2017
Junya Fujimoto; Sayuri Nunomura-Nakamura; Yihua Liu; Wenhua Lang; Tina McDowell; Yasminka Jakubek; Dalia Ezzeddine; Joshua Ochieng; Jason Petersen; Gareth E. Davies; Junya Fukuoka; Ignacio I. Wistuba; Erik A. Ehli; Jerry Fowler; Paul Scheet; Humam Kadara
Despite the urgency for prevention and treatment of lung adenocarcinoma (LUAD), we still do not know drivers in pathogenesis of the disease. Earlier work revealed that mice with knockout of the G‐protein coupled receptor Gprc5a develop late onset lung tumors including LUADs. Here, we sought to further probe the impact of Gprc5a expression on LUAD pathogenesis. We first surveyed GPRC5A expression in human tissues and found that GPRC5A was markedly elevated in human normal lung relative to other normal tissues and was consistently downregulated in LUADs. In sharp contrast to wild‐type littermates, Gprc5a–/– mice treated chronically with the nicotine‐specific carcinogen NNK developed LUADs by 6 months following NNK exposure. Immunofluorescence analysis revealed that the LUADs exhibited abundant expression of surfactant protein C and lacked the clara cell marker Ccsp, suggesting that these LUADs originated from alveolar type II cells. Next, we sought to survey genome‐wide alterations in the pathogenesis of Gprc5a–/– LUADs. Using whole exome sequencing, we found that carcinogen‐induced LUADs exhibited markedly higher somatic mutation burdens relative to spontaneous tumors. All LUADs were found to harbor somatic mutations in the Kras oncogene (p. G12D or p. Q61R). In contrast to spontaneous lesions, carcinogen‐induced Gprc5a–/– LUADs exhibited mutations (variants and copy number gains) in additional drivers (Atm, Kmt2d, Nf1, Trp53, Met, Ezh2). Our study underscores genomic alterations that represent early events in the development of Kras mutant LUAD following Gprc5a loss and tobacco carcinogen exposure and that may constitute targets for prevention and early treatment of this disease.