Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenhua Tang is active.

Publication


Featured researches published by Wenhua Tang.


PLOS ONE | 2009

MicroRNA miR-34 Inhibits Human Pancreatic Cancer Tumor-Initiating Cells

Qing Ji; Xinbao Hao; Min Zhang; Wenhua Tang; Meng Yang; Ling-Ling Li; Debing Xiang; Jeffrey T. DeSano; Guido T. Bommer; Daiming Fan; Eric R. Fearon; Theodore S. Lawrence; Liang Xu

Background MicroRNAs (miRNAs) have been implicated in cancer initiation and progression via their ability to affect expression of genes and proteins that regulate cell proliferation and/or cell death. Transcription of the three miRNA miR-34 family members was recently found to be directly regulated by p53. Among the target proteins regulated by miR-34 are Notch pathway proteins and Bcl-2, suggesting the possibility of a role for miR-34 in the maintenance and survival of cancer stem cells. Methodology/Principal Findings We examined the roles of miR-34 in p53-mutant human pancreatic cancer cell lines MiaPaCa2 and BxPC3, and the potential link to pancreatic cancer stem cells. Restoration of miR-34 expression in the pancreatic cancer cells by either transfection of miR-34 mimics or infection with lentiviral miR-34-MIF downregulated Bcl-2 and Notch1/2. miR-34 restoration significantly inhibited clonogenic cell growth and invasion, induced apoptosis and G1 and G2/M arrest in cell cycle, and sensitized the cells to chemotherapy and radiation. We identified that CD44+/CD133+ MiaPaCa2 cells are enriched with tumorsphere-forming and tumor-initiating cells or cancer stem/progenitor cells with high levels of Notch/Bcl-2 and loss of miR-34. More significantly, miR-34 restoration led to an 87% reduction of the tumor-initiating cell population, accompanied by significant inhibition of tumorsphere growth in vitro and tumor formation in vivo. Conclusions/Significance Our results demonstrate that miR-34 may restore, at least in part, the tumor suppressing function of the p53 in p53-deficient human pancreatic cancer cells. Our data support the view that miR-34 may be involved in pancreatic cancer stem cell self-renewal, potentially via the direct modulation of downstream targets Bcl-2 and Notch, implying that miR-34 may play an important role in pancreatic cancer stem cell self-renewal and/or cell fate determination. Restoration of miR-34 may hold significant promise as a novel molecular therapy for human pancreatic cancer with loss of p53–miR34, potentially via inhibiting pancreatic cancer stem cells.


Human Gene Therapy | 1999

Transferrin- Liposome-Mediated Systemic p53 Gene Therapy in Combination with Radiation Results in Regression of Human Head and Neck Cancer Xenografts

Liang Xu; Kathleen F. Pirollo; Wenhua Tang; Antonina Rait; Esther H. Chang

The use of cationic liposomes as nonviral vehicles for the delivery of therapeutic molecules is becoming increasingly prevalent in the field of gene therapy. We have previously demonstrated that the use of the transferrin ligand (Tf) to target a cationic liposome delivery system resulted in a significant increase in the transfection efficiency of the complex [Xu, L., Pirollo, K.F., and Chang, E.H. (1997). Hum. Gene Ther. 8, 467-475]. Delivery of wild-type (wt) p53 to a radiation-resistant squamous cell carcinoma of the head and neck (SCCHN) cell line via this ligand-targeted, liposome complex was also able to revert the radiation resistant phenotype of these cells in vitro. Here we optimized the Tf/liposome/DNA ratio of the complex (LipT) for maximum tumor cell targeting, even in the presence of serum. The efficient reestablishment of wtp53 function in these SCCHN tumor cells in vitro, via the LipT complex, restored the apoptotic pathway, resulting in a significant increase in radiation-induced apoptosis that was directly proportional to the level of exogenous wtp53 in the tumor cells. More significantly, intravenous administration of LipT-p53 markedly sensitized established SCCHN nude mouse xenograft tumors to radiotherapy. The combination of systemic LipT-p53 gene therapy and radiation resulted in complete tumor regression and inhibition of their recurrence even 6 months after the end of all treatment. These results indicate that this tumor-specific, ligand-liposome delivery system for p53 gene therapy, when used in concert with conventional radiotherapy, can provide a new and more effective means of cancer treatment.


Molecular Cancer Therapeutics | 2008

Natural BH3 mimetic (-)-gossypol chemosensitizes human prostate cancer via Bcl-xL inhibition accompanied by increase of Puma and Noxa

Yang Meng; Wenhua Tang; Yao Dai; Xiaoqing Wu; Meilan Liu; Qing Ji; Min Ji; Kenneth J. Pienta; Theodore S. Lawrence; Liang Xu

Antiapoptotic members of the Bcl-2 family proteins are overexpressed in prostate cancer and are promising molecular targets for modulating chemoresistance of prostate cancer. (-)-Gossypol, a natural BH3 mimetic, is a small-molecule inhibitor of Bcl-2/Bcl-xL/Mcl-1 currently in phase II clinical trials as an adjuvant therapy for human prostate cancer. Our objective is to examine the chemosensitization potential of (-)-gossypol in prostate cancer and its molecular mechanisms of action. (-)-Gossypol inhibited cell growth and induced apoptosis through mitochondria pathway in human prostate cancer PC-3 cells and synergistically enhanced the antitumor activity of docetaxel both in vitro and in vivo in PC-3 xenograft model in nude mouse. (-)-Gossypol blocked the interactions of Bcl-xL with Bax or Bad in cancer cells by fluorescence resonance energy transfer assay and overcame the Bcl-xL protection of FL5.12 model cells on interleukin-3 withdrawal. Western blot and real-time PCR studies showed that a dose-dependent increase of the proapoptotic BH3-only proteins Noxa and Puma contributed to the cell death induced by (-)-gossypol and to the synergistic effects of (-)-gossypol and docetaxel. The small interfering RNA knockdown studies showed that Noxa and Puma are required in the (-)-gossypol-induced cell death. Taken together, these data suggest that (-)-gossypol exerts its antitumor activity through inhibition of the antiapoptotic protein Bcl-xL accompanied by an increase of proapoptotic Noxa and Puma. (-)-Gossypol significantly enhances the antitumor activity of chemotherapy in vitro and in vivo, representing a promising new regime for the treatment of human hormone-refractory prostate cancer with Bcl-2/Bcl-xL/Mcl-1 overexpression. [Mol Cancer Ther 2008;7(7):2192–202]


PLOS ONE | 2010

Natural Proteasome Inhibitor Celastrol Suppresses Androgen-Independent Prostate Cancer Progression by Modulating Apoptotic Proteins and NF-kappaB

Yao Dai; Jeffrey T. DeSano; Wenhua Tang; Xiaojie Meng; Yang Meng; Ezra Burstein; Theodore S. Lawrence; Liang Xu

BACKGROUND Celastrol is a natural proteasome inhibitor that exhibits promising anti-tumor effects in human malignancies, especially the androgen-independent prostate cancer (AIPC) with constitutive NF-κB activation. Celastrol induces apoptosis by means of proteasome inhibition and suppresses prostate tumor growth. However, the detailed mechanism of action remains elusive. In the current study, we aim to test the hypothesis that celastrol suppresses AIPC progression via inhibiting the constitutive NF-κB activity as well as modulating the Bcl-2 family proteins. METHODOLOGY/PRINCIPAL FINDINGS We examined the efficacy of celastrol both in vitro and in vivo, and evaluated the role of NF-κB in celastrol-mediated AIPC regression. We found that celastrol inhibited cell proliferation in all three AIPC cell lines (PC-3, DU145 and CL1), with IC₅₀ in the range of 1-2 µM. Celastrol also suppressed cell migration and invasion. Celastrol significantly induced apoptosis as evidenced by increased sub-G1 population, caspase activation and PARP cleavage. Moreover, celastrol promoted cleavage of the anti-apoptotic protein Mcl-1 and activated the pro-apoptotic protein Noxa. In addition, celastrol rapidly blocked cytosolic IκBα degradation and nuclear translocation of RelA. Likewise, celastrol inhibited the expression of multiple NF-κB target genes that are involved in proliferation, invasion and anti-apoptosis. Celastrol suppressed AIPC tumor progression by inhibiting proliferation, increasing apoptosis and decreasing angiogenesis, in PC-3 xenograft model in nude mouse. Furthermore, increased cellular IκBα and inhibited expression of various NF-κB target genes were observed in tumor tissues. CONCLUSIONS/SIGNIFICANCE Our data suggest that, via targeting the proteasome, celastrol suppresses proliferation, invasion and angiogenesis by inducing the apoptotic machinery and attenuating constitutive NF-κB activity in AIPC both in vitro and in vivo. Celastrol as an active ingredient of traditional herbal medicine could thus be developed as a new therapeutic agent for hormone-refractory prostate cancer.


Cell Death & Differentiation | 2011

A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2-Beclin1 interaction at endoplasmic reticulum.

Jane B. Lian; Xiaoqing Wu; Fengtian He; David Karnak; Wenhua Tang; Yang Meng; D Xiang; Min Ji; Theodore S. Lawrence; Liang Xu

A natural BH3-mimetic, small-molecule inhibitor of Bcl-2, (−)-gossypol, shows promise in ongoing phase II and III clinical trials for human prostate cancer. In this study we show that (−)-gossypol preferentially induces autophagy in androgen-independent (AI) prostate cancer cells that have high levels of Bcl-2 and are resistant to apoptosis, both in vitro and in vivo, but not in androgen-dependent (AD) cells with low Bcl-2 and sensitive to apoptosis. The Bcl-2 inhibitor induces autophagy through blocking Bcl-2–Beclin1 interaction, together with downregulating Bcl-2, upregulating Beclin1, and activating the autophagic pathway. The (−)-gossypol-induced autophagy is dependent on Beclin1 and Atg5. Our results show for the first time that (−)-gossypol can also interrupt the interactions between Beclin1 and Bcl-2/Bcl-xL at endoplasmic reticulum, thus releasing the BH3-only pro-autophagic protein Beclin1, which in turn triggers the autophagic cascade. Oral administration of (−)-gossypol significantly inhibited the growth of AI prostate cancer xenografts, representing a promising new regimen for the treatment of human hormone-refractory prostate cancer with Bcl-2 overexpression. Our data provide new insights into the mode of cell death induced by Bcl-2 inhibitors, which will facilitate the rational design of clinical trials by selecting patients who are most likely to benefit from the Bcl-2-targeted molecular therapy.Bcl-2 is a key dual regulator of autophagy and apoptosis, but how the level of Bcl-2 influences the cellular decision between autophagy and apoptosis is unclear. The natural BH3-mimetic (-)-gossypol preferentially induces autophagy in androgen-independent (AI) prostate cancer cells that have high levels of Bcl-2 and are resistant to apoptosis, whereas apoptosis is preferentially induced in androgen-dependent or -independent cells with low Bcl-2. (-)-Gossypol induces autophagy via blocking Bcl-2-Beclin 1 interaction at the endoplasmic reticulum (ER), together with downregulating Bcl-2, upregulating Beclin 1 and activating the autophagic pathway. Furthermore, (-)-gossypol-induced autophagy is Beclin 1- and Atg5-dependent. These results provide new insights into the mode of cell death induced by Bcl-2 inhibitors, which could facilitate the rational design of clinical trials by selecting patients who are most likely to benefit from the Bcl-2-targeted molecular therapy.


Human Gene Therapy | 2002

Self-Assembly of a Virus-Mimicking Nanostructure System for Efficient Tumor-Targeted Gene Delivery

Liang Xu; Peter Frederik; Kathleen F. Pirollo; Wenhua Tang; Antonina Rait; Lai-Man Xiang; Weiqun Huang; Idalia Cruz; Yuzhi Yin; Esther H. Chang

Molecular therapy, including gene therapy, is a promising strategy for the treatment of human disease. However, delivery of molecular therapeutics efficiently and specifically to the target tissue remains a significant challenge. A human transferrin (Tf)-targeted cationic liposome-DNA complex, Tf-lipoplex, has shown high gene transfer efficiency and efficacy with human head and neck cancer in vitro and in vivo (Xu, L., Pirollo, K.F., Tang, W.H., Rait, A., and Chang, E.H. Hum. Gene Ther. 1999;10:2941-2952). Here we explore the structure, size, formation process, and structure-function relationships of Tf-lipoplex. We have observed Tf-lipoplex to have a highly compact structure, with a relatively uniform size of 50-90 nm. This nanostructure is novel in that it resembles a virus particle with a dense core enveloped by a membrane coated with Tf molecules spiking the surface. More importantly, compared with unliganded lipoplex, Tf-lipoplex shows enhanced stability, improved in vivo gene transfer efficiency, and long-term efficacy for systemic p53 gene therapy of human prostate cancer when used in combination with conventional radiotherapy. On the basis of our observations, we propose a multistep self-assembly process and Tf-facilitated DNA cocondensation model that may provide an explanation for the resultant small size and effectiveness of our nanostructural Tf-lipoplex system.


BMC Cancer | 2009

A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB

Yao Dai; Meilan Liu; Wenhua Tang; Yongming Li; Jiqin Lian; Theodore S. Lawrence; Liang Xu

BackgroundAlthough tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for human cancer therapy, prostate cancer still remains resistant to TRAIL. Both X-linked inhibitor of apoptosis (XIAP) and nuclear factor-kappaB function as key negative regulators of TRAIL signaling. In this study, we evaluated the effect of SH122, a small molecule mimetic of the second mitochondria-derived activator of caspases (Smac), on TRAIL-induced apoptosis in prostate cancer cells.MethodsThe potential of Smac-mimetics to bind XIAP or cIAP-1 was examined by pull-down assay. Cytotoxicity of TRAIL and/or Smac-mimetics was determined by a standard cell growth assay. Silencing of XIAP or cIAP-1 was achieved by transient transfection of short hairpin RNA. Apoptosis was detected by Annexin V-PI staining followed by flow cytometry and by Western Blot analysis of caspases, PARP and Bid. NF-kappaB activation was determined by subcellular fractionation, real time RT-PCR and reporter assay.ResultsSH122, but not its inactive analog, binds to XIAP and cIAP-1. SH122 significantly sensitized prostate cancer cells to TRAIL-mediated cell death. Moreover, SH122 enhanced TRAIL-induced apoptosis via both the death receptor and the mitochondrial pathway. Knockdown of both XIAP and cIAP-1 sensitized cellular response to TRAIL. XIAP-knockdown attenuated sensitivity of SH122 to TRAIL-induced cytotoxicity, confirming that XIAP is an important target for IAP-inhibitor-mediated TRAIL sensitization. SH122 also suppressed TRAIL-induced NF-kappaB activation by preventing cytosolic IkappaB-alpha degradation and RelA nuclear translocation, as well as by suppressing NF-kappaB target gene expression.ConclusionThese results demonstrate that SH122 sensitizes human prostate cancer cells to TRAIL-induced apoptosis by mimicking Smac and blocking both IAPs and NF-kappaB. Modulating IAPs may represent a promising approach to overcoming TRAIL-resistance in human prostate cancer with constitutively active NF-kappaB signaling.


Clinical Cancer Research | 2008

Molecularly targeted radiosensitization of human prostate cancer by modulating inhibitor of apoptosis

Yao Dai; Meilan Liu; Wenhua Tang; Jeffrey T. DeSano; Ezra Burstein; Mary A. Davis; Kenneth J. Pienta; Theodore S. Lawrence; Liang Xu

Purpose: The inhibitor of apoptosis proteins (IAP) are overexpressed in hormone-refractory prostate cancer, rendering the cancer cells resistant to radiation. This study aims to investigate the radiosensitizing effect of small-molecule IAP inhibitor both in vitro and in vivo in androgen-independent prostate cancer and the possible mechanism of radiosensitization. Experimental Design: Radiosensitization of SH-130 in human prostate cancer DU-145 cells was determined by clonogenic survival assay. Combination effect of SH-130 and ionizing radiation was evaluated by apoptosis assays. Pull-down and immunoprecipitation assays were employed to investigate the interaction between SH-130 and IAPs. DU-145 xenografts in nude mice were treated with SH-130, radiation, or combination, and tumor suppression effect was determined by caliper measurement or bioluminescence imaging. Nuclear factor-κB activation was detected by luciferase reporter assay and quantitative real-time PCR. Results: SH-130 potently enhanced radiation-induced caspase activation and apoptosis in DU-145 cells. Both X-linked IAP and cIAP-1 can be pulled down by SH-130 but not by inactive SH-123. Moreover, SH-130 interrupted interaction between X-linked IAP/cIAP-1 and Smac. In a nude mouse xenograft model, SH-130 potently sensitized the DU-145 tumors to X-ray radiation without increasing systemic toxicity. The combination therapy suppressed tumor growth more significantly than either treatment alone, with over 80% of complete tumor regression. Furthermore, SH-130 partially blocked tumor necrosis factor-α- and radiation-induced nuclear factor-κB activation in DU-145 cells. Conclusions: Our results show that small-molecule inhibitors of IAPs can overcome apoptosis resistance and radiosensitize human prostate cancer with high levels of IAPs. Molecular modulation of IAPs may improve the outcome of prostate cancer radiotherapy.


Bioorganic & Medicinal Chemistry | 2010

Design and synthesis of novel Gefitinib analogues with improved anti-tumor activity

Xiaoqing Wu; Mingdong Li; Yang Qu; Wenhua Tang; Youguang Zheng; Jiqin Lian; Min Ji; Liang Xu

There is an urgent need to design and develop new and more potent EGFR inhibitors with improved anti-tumor activity. Here we describe the design and synthesis of two series of 4-benzothienyl amino quinazolines as new analogues of the EGFR inhibitor Gefitinib. The anti-tumor activity of these novel Gefitinib analogues in 6 human cancer cell lines was examined. Compared with the parental Gefitinib, most of the new compounds show a markedly increased cytotoxicity to cancer cells. Furthermore, several of the series B compounds that side chains at position 7 contain either a methyl or ethyl group are potent pan-RTK inhibitors. Two representative compounds in this class, 15 and 17, have an enhanced capability to inhibit cancer cell growth and induce apoptosis in vitro and inhibit tumor formation in vivo in human cancer cells with high HER-2, as compared with the parental Gefitinib. Thus they may be promising lead compounds to be developed as an alternative for current Gefitinib therapy or for Gefitinb-resistant patients, potentially via simultaneously blocking multiple RTK signaling pathways.


Clinical Cancer Research | 2013

HAb18G/CD147 Promotes pSTAT3-Mediated Pancreatic Cancer Development via CD44s

Ling Li; Wenhua Tang; Xiaoqing Wu; David Karnak; Xiaojie Meng; Rachel Thompson; Xinbao Hao; Yongmin Li; Xiaotan T. Qiao; Jiayuh Lin; James R. Fuchs; Diane M. Simeone; Zhi Nan Chen; Theodore S. Lawrence; Liang Xu

Purpose: Signal transducer and activator of transcription 3 (STAT3) plays a critical role in initiation and progression of pancreatic cancer. However, therapeutically targeting STAT3 has failed clinically. We previously identified HAb18G/CD147 as an effective target for cancer treatment. In this study, we aimed to investigate the potential role of HAb18G/CD147 in STAT3-involved pancreatic tumorigenesis in vitro and in vivo. Experimental Design: The expression of HAb18G/CD147, pSTAT3, and CD44s was determined in tissue microarrays. The tumorigenic function and molecular signaling mechanism of HAb18G/CD147 were assessed by in vitro cellular and clonogenic growth, reporter assay, immunoblot assay, immunofluorescence staining, immunoprecipitation, and in vivo tumor formation using loss or gain-of-function strategies. Results: Highly expressed HAb18G/CD147 promoted cellular and clonogenic growth in vitro and tumorigenicity in vivo. Cyclophilin A (CyPA), a ligand of CD147, stimulated STAT3 phosphorylation and its downstream genes cyclin D1/survivin through HAb18G/CD147-dependent mechanisms. HAb18G/CD147 was associated and colocalized with cancer stem cell marker CD44s in lipid rafts. The inhibitors of STAT3 and survivin, as well as CD44s neutralizing antibodies suppressed the HAb18G/CD147-induced cell growth. High HAb18G/CD147 expression in pancreatic cancer was significantly correlated with the poor tumor differentiation, and the high coexpression of HAb18G/CD147-CD44s-STAT3 associated with poor survival of patients with pancreatic cancer. Conclusions: We identified HAb18G/CD147 as a novel upstream activator of STAT3, which interacts with CD44s and plays a critical role in the development of pancreatic cancer. The data suggest that HAb18G/CD147 could be a promising therapeutic target for highly aggressive pancreatic cancer and a surrogate marker in the STAT3-targeted molecular therapies. Clin Cancer Res; 19(24); 6703–15. ©2013 AACR.

Collaboration


Dive into the Wenhua Tang's collaboration.

Top Co-Authors

Avatar

Liang Xu

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yao Dai

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinbao Hao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Yang Meng

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Li

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Qing Ji

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge