Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenjia Qu is active.

Publication


Featured researches published by Wenjia Qu.


Methods | 2002

Conversion-specific detection of DNA methylation using real-time polymerase chain reaction (ConLight-MSP) to avoid false positives

Keith N. Rand; Wenjia Qu; Thu Ho; Susan J. Clark; Peter L. Molloy

Methylated cytosines appear as sequence variations following bisulfite treatment and polymerase chain reaction (PCR) amplification. By using methylation-specific PCR (MSP), it is possible to detect methylated sequences in a background of unmethylated DNA with a high level of sensitivity. MSP is frequently used to identify methylated alleles in carcinogenesis, and may be combined with the TaqMan real-time PCR system, which uses fluorescence-based detection of amplification products during the amplification phase of the PCR and increases the sensitivity of detection (MethyLight). Sequences that have been incompletely converted during the bisulfite treatment are frequently coamplified during MSP, resulting in an overestimation of DNA methylation. The presence of amplified sequences originating from partially unconverted material may be determined by sequencing or by restriction digests or Southern blots of MSPs. Alternately, we have developed a method where the PCR and conversion assay are combined within a single TaqMan reaction by using an additional fluorescent probe directed against unconverted DNA (ConLight-MSP). We recommend that MSP detection always should include a step to detect unconverted DNA to avoid overestimation of the frequency or level of methylated DNA in the sample.


PLOS ONE | 2011

Impact of the Genome on the Epigenome Is Manifested in DNA Methylation Patterns of Imprinted Regions in Monozygotic and Dizygotic Twins

Marcel W. Coolen; Aaron L. Statham; Wenjia Qu; Megan J. Campbell; Anjali K. Henders; Grant W. Montgomery; Nicholas G. Martin; Susan J. Clark

One of the best studied read-outs of epigenetic change is the differential expression of imprinted genes, controlled by differential methylation of imprinted control regions (ICRs). To address the impact of genotype on the epigenome, we performed a detailed study in 128 pairs of monozygotic (MZ) and 128 pairs of dizygotic (DZ) twins, interrogating the DNA methylation status of the ICRs of IGF2, H19, KCNQ1, GNAS and the non-imprinted gene RUNX1. While we found a similar overall pattern of methylation between MZ and DZ twins, we also observed a high degree of variability in individual CpG methylation levels, notably at the H19/IGF2 loci. A degree of methylation plasticity independent of the genome sequence was observed, with both local and regional CpG methylation changes, discordant between MZ and DZ individual pairs. However, concordant gains or losses of methylation, within individual twin pairs were more common in MZ than DZ twin pairs, indicating that de novo and/or maintenance methylation is influenced by the underlying DNA sequence. Specifically, for the first time we showed that the rs10732516 [A] polymorphism, located in a critical CTCF binding site in the H19 ICR locus, is strongly associated with increased hypermethylation of specific CpG sites in the maternal H19 allele. Together, our results highlight the impact of the genome on the epigenome and demonstrate that while DNA methylation states are tightly maintained between genetically identical and related individuals, there remains considerable epigenetic variation that may contribute to disease susceptibility.


Oncogene | 2013

Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer

Toby Hulf; Tennille Sibbritt; Erik D Wiklund; Kate I. Patterson; Jenny Z. Song; Clare Stirzaker; Wenjia Qu; Shalima S. Nair; Lisa G. Horvath; Nicola J. Armstrong; James G. Kench; R. Sutherland; Susan J. Clark

Deregulation of microRNA (miRNA) expression can have a critical role in carcinogenesis. Here we show in prostate cancer that miRNA-205 (miR-205) transcription is commonly repressed and the MIR-205 locus is hypermethylated. LOC642587, the MIR-205 host gene of unknown function, is also concordantly inactivated. We show that miR-205 targets mediator 1 (MED1, also called TRAP220 and PPARBP) for transcriptional silencing in normal prostate cells, leading to reduction in MED1 mRNA levels, and in total and active phospho-MED1 protein. Overexpression of miR-205 in prostate cancer cells negatively affects cell viability, consistent with a tumor suppressor function. We found that hypermethylation of the MIR-205 locus was strongly related with a decrease in miR-205 expression and an increase in MED1 expression in primary tumor samples (n=14), when compared with matched normal prostate (n=7). An expanded patient cohort (tumor n=149, matched normal n=30) also showed significant MIR-205 DNA methylation in tumors compared with normal, and MIR-205 hypermethylation is significantly associated with biochemical recurrence (hazard ratio=2.005, 95% confidence interval (1.109, 3.625), P=0.02), in patients with low preoperative prostate specific antigen. In summary, these results suggest that miR-205 is an epigenetically regulated tumor suppressor that targets MED1 and may provide a potential biomarker in prostate cancer management.


Nature Communications | 2015

Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value

Clare Stirzaker; Elena Zotenko; Jenny Z. Song; Wenjia Qu; Shalima S. Nair; Warwick J. Locke; Andrew Stone; Nicola J. Armstong; Mark D. Robinson; Alexander Dobrovic; Kelly A. Avery-Kiejda; Kate M. Peters; Juliet D. French; Sandra Stein; Darren Korbie; Matt Trau; John F Forbes; Rodney J. Scott; Melissa A. Brown; Glenn Duval Francis; Susan J. Clark

Epigenetic alterations in the cancer methylome are common in breast cancer and provide novel options for tumour stratification. Here, we perform whole-genome methylation capture sequencing on small amounts of DNA isolated from formalin-fixed, paraffin-embedded tissue from triple-negative breast cancer (TNBC) and matched normal samples. We identify differentially methylated regions (DMRs) enriched with promoters associated with transcription factor binding sites and DNA hypersensitive sites. Importantly, we stratify TNBCs into three distinct methylation clusters associated with better or worse prognosis and identify 17 DMRs that show a strong association with overall survival, including DMRs located in the Wilms tumour 1 (WT1) gene, bi-directional-promoter and antisense WT1-AS. Our data reveal that coordinated hypermethylation can occur in oestrogen receptor-negative disease, and that characterizing the epigenetic framework provides a potential signature to stratify TNBCs. Together, our findings demonstrate the feasibility of profiling the cancer methylome with limited archival tissue to identify regulatory regions associated with cancer.


Oncogene | 2012

Mapping the regulatory sequences controlling 93 breast cancer-associated miRNA genes leads to the identification of two functional promoters of the Hsa-mir-200b cluster, methylation of which is associated with metastasis or hormone receptor status in advanced breast cancer

Ejh Wee; Kate M. Peters; Shalima S. Nair; T. Hulf; Sandra Stein; Sarah Wagner; Peter Bailey; Sy Lee; Wenjia Qu; B. Brewster; Juliet D. French; Alexander Dobrovic; Glenn Duval Francis; Susan J. Clark; Melissa A. Brown

MicroRNAs (miRNAs) are small non-coding RNAs of ∼20 nt in length that are capable of modulating gene expression post-transcriptionally. Although miRNAs have been implicated in cancer, including breast cancer, the regulation of miRNA transcription and the role of defects in this process in cancer is not well understood. In this study we have mapped the promoters of 93 breast cancer-associated miRNAs, and then looked for associations between DNA methylation of 15 of these promoters and miRNA expression in breast cancer cells. The miRNA promoters with clearest association between DNA methylation and expression included a previously described and a novel promoter of the Hsa-mir-200b cluster. The novel promoter of the Hsa-mir-200b cluster, denoted P2, is located ∼2 kb upstream of the 5′ stemloop and maps within a CpG island. P2 has comparable promoter activity to the previously reported promoter (P1), and is able to drive the expression of miR-200b in its endogenous genomic context. DNA methylation of both P1 and P2 was inversely associated with miR-200b expression in eight out of nine breast cancer cell lines, and in vitro methylation of both promoters repressed their activity in reporter assays. In clinical samples, P1 and P2 were differentially methylated with methylation inversely associated with miR-200b expression. P1 was hypermethylated in metastatic lymph nodes compared with matched primary breast tumours whereas P2 hypermethylation was associated with loss of either oestrogen receptor or progesterone receptor. Hypomethylation of P2 was associated with gain of HER2 and androgen receptor expression. These data suggest an association between miR-200b regulation and breast cancer subtype and a potential use of DNA methylation of miRNA promoters as a component of a suite of breast cancer biomarkers.


British Journal of Cancer | 2014

Methylated Glutathione S-transferase 1 (mGSTP1) is a potential plasma free DNA epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer.

K. K. Mahon; Wenjia Qu; James Devaney; Cheryl L. Paul; Lesley Castillo; Richard Wykes; Mark D. Chatfield; Michael Boyer; Martin R. Stockler; Gavin M. Marx; Howard Gurney; Girish Mallesara; Peter L. Molloy; Lisa G. Horvath; Susan J. Clark

Background:Glutathione S-transferase 1 (GSTP1) inactivation is associated with CpG island promoter hypermethylation in the majority of prostate cancers (PCs). This study assessed whether the level of circulating methylated GSTP1 (mGSTP1) in plasma DNA is associated with chemotherapy response and overall survival (OS).Methods:Plasma samples were collected prospectively from a Phase I exploratory cohort of 75 men with castrate-resistant PC (CRPC) and a Phase II independent validation cohort (n=51). mGSTP1 levels in free DNA were measured using a sensitive methylation-specific PCR assay.Results:The Phase I cohort identified that detectable baseline mGSTP1 DNA was associated with poorer OS (HR, 4.2 95% CI 2.1–8.2; P<0.0001). A decrease in mGSTP1 DNA levels after cycle 1 was associated with a PSA response (P=0.008). In the Phase II cohort, baseline mGSTP1 DNA was a stronger predictor of OS than PSA change after 3 months (P=0.02). Undetectable plasma mGSTP1 after one cycle of chemotherapy was associated with PSA response (P=0.007).Conclusions:We identified plasma mGSTP1 DNA as a potential prognostic marker in men with CRPC as well as a potential surrogate therapeutic efficacy marker for chemotherapy and corroborated these findings in an independent Phase II cohort. Prospective Phase III assessment of mGSTP1 levels in plasma DNA is now warranted.


Nucleic Acids Research | 2005

Headloop suppression PCR and its application to selective amplification of methylated DNA sequences

Keith N. Rand; Thu Ho; Wenjia Qu; Susan M. Mitchell; Rose White; Susan J. Clark; Peter L. Molloy

Selective amplification in PCR is principally determined by the sequence of the primers and the temperature of the annealing step. We have developed a new PCR technique for distinguishing related sequences in which additional selectivity is dependent on sequences within the amplicon. A 5′ extension is included in one (or both) primer(s) that corresponds to sequences within one of the related amplicons. After copying and incorporation into the PCR product this sequence is then able to loop back, anneal to the internal sequences and prime to form a hairpin structure—this structure is then refractory to further amplification. Thus, amplification of sequences containing a perfect match to the 5′ extension is suppressed while amplification of sequences containing mismatches or lacking the sequence is unaffected. We have applied Headloop PCR to DNA that had been bisulphite-treated for the selective amplification of methylated sequences of the human GSTP1 gene in the presence of up to a 105-fold excess of unmethylated sequences. Headloop PCR has a potential for clinical application in the detection of differently methylated DNAs following bisulphite treatment as well as for selective amplification of sequence variants or mutants in the presence of an excess of closely related DNA sequences.


Cancer Epidemiology, Biomarkers & Prevention | 2011

Epigenetic Deregulation Across Chromosome 2q14.2 Differentiates Normal from Prostate Cancer and Provides a Regional Panel of Novel DNA Methylation Cancer Biomarkers

James Devaney; Clare Stirzaker; Wenjia Qu; Jenny Z. Song; Aaron L. Statham; Kate I. Patterson; Lisa G. Horvath; Bruce Tabor; Marcel W. Coolen; Toby Hulf; James G. Kench; Susan M. Henshall; Ruth Pe Benito; Anne-Maree Haynes; Regina Mayor; Miquel Angel Peinado; Robert L. Sutherland; Susan J. Clark

Background: Previously, we showed that gene suppression commonly occurs across chromosome 2q14.2 in colorectal cancer, through a process of long-range epigenetic silencing (LRES), involving a combination of DNA methylation and repressive histone modifications. We now investigate whether LRES also occurs in prostate cancer across this 4-Mb region and whether differential DNA methylation of 2q14.2 genes could provide a regional panel of prostate cancer biomarkers. Methods: We used highly sensitive DNA methylation headloop PCR assays that can detect 10 to 25 pg of methylated DNA with a specificity of at least 1:1,000, and chromatin immunoprecipitation assays to investigate regional epigenetic remodeling across 2q14.2 in prostate cancer, in a cohort of 195 primary prostate tumors and 90 matched normal controls. Results: Prostate cancer cells exhibit concordant deacetylation and methylation of histone H3 Lysine 9 (H3K9Ac and H3K9me2, respectively), and localized DNA hypermethylation of EN1, SCTR, and INHBB and corresponding loss of H3K27me3. EN1 and SCTR were frequently methylated (65% and 53%, respectively), whereas INHBB was less frequently methylated. Conclusions: Consistent with LRES in colorectal cancer, we found regional epigenetic remodeling across 2q14.2 in prostate cancer. Concordant methylation of EN1 and SCTR was able to differentiate cancer from normal (P < 0.0001) and improved the diagnostic specificity of GSTP1 methylation for prostate cancer detection by 26%. Impact: For the first time we show that DNA methylation of EN1 and SCTR promoters provide potential novel biomarkers for prostate cancer detection and in combination with GSTP1 methylation can add increased specificity and sensitivity to improve diagnostic potential. Cancer Epidemiol Biomarkers Prev; 20(1); 148–59. ©2011 AACR.


British Journal of Cancer | 2010

Collagen and calcium-binding EGF domains 1 is frequently inactivated in ovarian cancer by aberrant promoter hypermethylation and modulates cell migration and survival

Caroline A. Barton; Brian S. Gloss; Wenjia Qu; Aaron L. Statham; Neville F. Hacker; R. Sutherland; Susan J. Clark; Philippa M. O'Brien

Background:Collagen and calcium-binding EGF domains 1 (CCBE1) is an uncharacterised gene that has down-regulated expression in breast cancer. As CCBE1 maps to 18q21.32, a region frequently exhibiting loss of heterozygosity in ovarian cancer, the aim of this study was to determine the expression and function of CCBE1 in ovarian cancer.Methods:Expression and methylation patterns of CCBE1 were determined in ovarian cancer cell lines and primary tumours. CCBE1 contains collagen repeats and an aspartic acid/asparagine hydroxylation/EGF-like domain, suggesting a function in extracellular matrix remodelling and migration, which was determined using small-interfering RNA (siRNA)-mediated knockdown and over-expression of CCBE1 in cell lines.Results:CCBE1 is expressed in normal ovary, but is reduced in ovarian cancer cell lines and primary carcinomas. Pharmacological demethylation/deacetylation in ovarian cancer cell lines re-induced CCBE1 expression, indicating that epigenetic mechanisms contribute to its silencing in cancer. CCBE1 promoter hypermethylation was detected in 6/11 (55%) ovarian cancer cell lines and 38/81 (41%) ovarian carcinomas. siRNA-mediated knockdown of CCBE1 in ovarian cancer cell lines enhanced their migration; conversely, re-expression of CCBE1 reduced migration and survival. Hence, loss of CCBE1 expression may promote ovarian carcinogenesis by enhancing migration and cell survival.Conclusions:These data suggest that CCBE1 is a new candidate tumour suppressor in ovarian cancer.


Nature Communications | 2017

Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer

Fátima Valdés-Mora; Cathryn M. Gould; Yolanda Colino-Sanguino; Wenjia Qu; Jenny Z. Song; Kylie M. Taylor; Fabian A. Buske; Aaron L. Statham; Shalima S. Nair; Nicola J. Armstrong; James G. Kench; Kenneth Lee; Lisa G. Horvath; Minru Qiu; Alexei Ilinykh; Nicole S. Yeo-Teh; David Gallego-Ortega; Clare Stirzaker; Susan J. Clark

Acetylation of the histone variant H2A.Z (H2A.Zac) occurs at active promoters and is associated with oncogene activation in prostate cancer, but its role in enhancer function is still poorly understood. Here we show that H2A.Zac containing nucleosomes are commonly redistributed to neo-enhancers in cancer resulting in a concomitant gain of chromatin accessibility and ectopic gene expression. Notably incorporation of acetylated H2A.Z nucleosomes is a pre-requisite for activation of Androgen receptor (AR) associated enhancers. H2A.Zac nucleosome occupancy is rapidly remodeled to flank the AR sites to initiate the formation of nucleosome-free regions and the production of AR-enhancer RNAs upon androgen treatment. Remarkably higher levels of global H2A.Zac correlate with poorer prognosis. Altogether these data demonstrate the novel contribution of H2A.Zac in activation of newly formed enhancers in prostate cancer.Acetylation of the histone variant H2A.Z at gene promoters is associated with oncogene activation; however, it is unclear if such modification has a role in regulating the function of enhancers. Here the authors show that acetylated H2A.Z is redistributed at cancer neo-enhancers and regulates the activity of specific enhancers of cancer-related genes.

Collaboration


Dive into the Wenjia Qu's collaboration.

Top Co-Authors

Avatar

Susan J. Clark

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shalima S. Nair

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Aaron L. Statham

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Clare Stirzaker

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jenny Z. Song

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Peter L. Molloy

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

James G. Kench

Royal Prince Alfred Hospital

View shared research outputs
Top Co-Authors

Avatar

Gavin M. Marx

Sydney Adventist Hospital

View shared research outputs
Top Co-Authors

Avatar

James Devaney

Garvan Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge