Wenjian Ma
Tianjin University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wenjian Ma.
Journal of Biological Chemistry | 2012
Xing-Hua Liao; Nan Wang; Dong-Wei Zhao; De-Liang Zheng; Li Zheng; Wen-Jing Xing; Wenjian Ma; Le-Yuan Bao; Jian Dong; Tongcun Zhang
Background: The Hippo-Yap signaling pathway is one of the critical pathways regulating cell proliferation, differentiation, and apoptosis. Results: Knockdown of endogenous Yap1 impairs VSMC proliferation and enhances VSMC contractile phenotype by promoting the association of the myocardin-SRF-CArG complex. Conclusion: The Yap1 signaling pathway is a central regulator of the phenotypic switch of VSMCs. Significance: The phenotypic switch of VSMCs and vessel injury response can be controlled by modulation of Hippo-Yap signaling. The Hippo-Yap (Yes-associated protein) signaling pathway has emerged as one of the critical pathways regulating cell proliferation, differentiation, and apoptosis in response to environmental and developmental cues. However, Yap1 roles in vascular smooth muscle cell (VSMC) biology have not been investigated. VSMCs undergo phenotypic switch, a process characterized by decreased gene expression of VSMC contractile markers and increased proliferation, migration, and matrix synthesis. The goals of the present studies were to investigate the relationship between Yap1 and VSMC phenotypic switch and to determine the molecular mechanisms by which Yap1 affects this essential process in VSMC biology. Results demonstrated that the expression of Yap1 was rapidly up-regulated by stimulation with PDGF-BB (a known inducer of phenotypic switch in VSMCs) and in the injured vessel wall. Knockdown of Yap1 impaired VSMC proliferation in vitro and enhanced the expression of VSMC contractile genes as well by increasing serum response factor binding to CArG-containing regions of VSMC-specific contractile genes within intact chromatin. Conversely, the interaction between serum response factor and its co-activator myocardin was reduced by overexpression of Yap1 in a dose-dependent manner. Taken together, these results indicate that down-regulation of Yap1 promotes VSMC contractile phenotype by both up-regulating myocardin expression and promoting the association of the serum response factor-myocardin complex with VSMC contractile gene promoters and suggest that the Yap1 signaling pathway is a central regulator of phenotypic switch of VSMCs.
Stem Cells | 2016
Rui Zhang; Nan Wang; Li-Nan Zhang; Na Huang; Tie-Feng Song; Zheng-Zheng Li; Man Li; Xue-Gang Luo; Hao Zhou; Hongpeng He; Xiao-Yu Zhang; Wenjian Ma; Tong-Cun Zhang
Human mesenchymal stem cells (hMSCs) possess the potential to differentiate into endothelial cells (EC). DNA methylation plays an important role in cell differentiation during development. However, the role of the DNA methyltransferases Dnmt1 and Dnmt3a in specific arterial differentiation of hMSCs is not clear. Here, we show that the CpG islands in the promoter regions of the EC specification and arterial marker genes were highly methylated in hMSCs based on bisulfite genomic sequencing. Treatment with the DNMT inhibitor 5‐aza‐dc induced the reactivation of EC specification and arterial marker genes by promoting demethylation of these genes as well as stimulating tube‐like structure formation. The hMSCs with stable knockdown of Dnmt1/Dnmt3a were highly angiogenic and expressed several arterial specific transcription factors and marker genes. A Matrigel plug assay confirmed that Dnmt1/Dnmt3a stable knockdown hMSCs enhanced blood vessel formation compared with WT MSCs. We also identified that the transcription factor E2F1 could upregulate the transcription of arterial marker genes by binding to the promoters of arterial genes, suggesting its critical role for arterial specification. Moreover, miRNA gain/loss‐of‐function analyses revealed that miR152 and miR30a were involved in endothelial differentiation of hMSCs by targeting Dnmt1 and Dnmt3a, respectively. Taken together, these data suggest that Dnmt1 and Dnmt3a are critical regulators for epigenetic silencing of EC marker genes and that E2F1 plays an important role in promoting arterial cell determination. Stem Cells 2016;34:1273–1283
Cellular Signalling | 2017
Hongpeng He; Zhaoqiang Wei; Fu Du; Chao Meng; De-Liang Zheng; Yongwei Lai; Hailin Yao; Hao Zhou; Nan Wang; Xue-Gang Luo; Wenjian Ma; Tong-Cun Zhang
HOTAIR is a long non-coding RNA highly expressed in cancer tissues and is a negative prognostic factor, whereas the mechanism by which HOTAIR expression is upregulated in cancers remains elusive. In the present study, the regulation of HOTAIR transcription was investigated in breast cancer cells MCF7 and T47D. We found that, when the RhoC-ROCK signaling was disturbed by specific siRNAs or chemical inhibitors, the expression of HOTAIR would be down-regulated. Further, MRTF-A and SRF were found to affect HOTAIR expression. HOTAIR promoter activity was demonstrated to be regulated by the RhoC-MRTF-A-SRF signaling in a CArG-box-dependent manner. Moreover, MRTF-A was identified to physically interact with HOTAIR promoter, and RNA polymerase II association on HOTAIR promoter was enhanced by MRTF-A overexpression. Taken together, our results suggest that HOTAIR is regulated by the RhoC-MRTF-A-SRF signaling pathway in breast cancer cells.
Life Sciences | 2016
Man Li; Hongpeng He; Hui-Qin Gong; Jian Zhang; Wenjian Ma; Hao Zhou; Dong-Sun Cao; Nan Wang; Tong-Cun Zhang
AIMS Dysregulation of Ca(2+) is a central cause of cardiac hypertrophy. The α1C subunit of L-type Ca(2+) channel (LTCC) is a pore-forming protein which is responsible for the voltage-dependent channel gating and channel selectivity for Ca(2+). Myocardin and nuclear factor of activated T-cells c4 (NFATc4) are two key transcription factors in cardiac hypertrophy. We aimed to investigate the underlying mechanism of the transcriptional regulation of LTCC α1C by myocardin and NFATc4 in hypertrophic cardiomyocytes. MAIN METHODS Endothelin-1 (ET-1) was used to induce cardiomyocyte hypertrophy. Cyclosporin A (CSA) was used to block the activation of calcineurin/NFATc4 pathway in ET-1-treated cardiomyocytes and the expression of LTCC α1C were examined. Overexpression or RNAi interfering experiments were performed to investigate the effects of NFATc4 or myocardin on the transcriptional regulation of LTCC α1C. Interactions between NFATc4 and myocardin or the association of NFATc4 with myocardin promoter were assessed via Co-IP or ChIP assays respectively. KEY FINDINGS In the present study, we found that ET-1 stimulated LTCC α1C transcription in neonatal rat cardiomyocytes partially via the activation of calcineurin/NFATc4 pathway. Overexpression of NFATc4 or myocardin promoted LTCC α1C expression in cardiomyocytes. Ca(2+) channel blocker verapamil or knockdown of α1C inhibited myocardin-induced cardiomyocyte hypertrophy. Further studies showed that NFATc4 interacted with myocardin to synergistically activate the expression of LTCC α1C, moreover, NFATc4 activated myocardin expression by binding to its promoter. SIGNIFICANCE Our results suggest a novel mechanism of the transcriptional regulation of LTCC α1C by synergistic activities of NFATc4 and myocardin in ET-1-induced cardiomyocyte hypertrophy.
Acta Biochimica et Biophysica Sinica | 2013
Zhipeng Liu; Xue-Gang Luo; Lei Liu; Wenwen Zhao; Shu Guo; Yu Guo; Nan Wang; Hongpeng He; Xing-Hua Liao; Wenjian Ma; Hao Zhou; Tong-Cun Zhang
Previous studies have revealed that histone acetyltransferase p300 is recruited to the promoters of certain cardiac and smooth muscle specific genes to enhance the transactivation activity of myocardin, which is a master regulator in cardiovascular differentiation and development. Here, we found that the gene encoding catechol-O-methyltransferase (COMT), an important metabolic enzyme catalyzing the conversion of estrogen, is also a target gene of myocardin-related transcription factors (MRTFs). Megakaryoblastic leukemia 1 (MKL1, also named MRTF-A) and p300 could synergistically augment the expression of COMT gene, increase the metabolic rate of estrogen, and thus reduce the proliferation of MCF-7 breast cancer cells stimulated by estrogen.
Journal of Gastric Cancer | 2017
Lei Wang; Qiu-Tong Wang; Yupeng Liu; Qing-Qing Dong; Hai-Jie Hu; Zhi Miao; Shuang Li; Yong Liu; Hao Zhou; Tong-Cun Zhang; Wenjian Ma; Xue-Gang Luo
Purpose We previously found that the histone methyltransferase suppressor of variegation, enhancer of zeste, trithorax and myeloid-nervy-deformed epidermal autoregulatory factor-1 domain-containing protein 3 (SMYD3) is a potential independent predictive factor or prognostic factor for overall survival in gastric cancer patients, but its roles seem to differ from those in other cancers. Therefore, in this study, the detailed functions of SMYD3 in cell proliferation and migration in gastric cancer were examined. Materials and Methods SMYD3 was overexpressed or suppressed by transfection with an expression plasmid or siRNA, and a wound healing migration assay and Transwell assay were performed to detect the migration and invasion ability of gastric cancer cells. Additionally, an MTT assay and clonogenic assay were performed to evaluate cell proliferation, and a cell cycle analysis was performed by propidium iodide staining. Furthermore, the expression of genes implicated in the ataxia telangiectasia mutated (ATM) pathway and proteins involved in cell cycle regulation were detected by polymerase chain reaction and western blot analyses. Results Compared with control cells, gastric cancer cells transfected with si-SMYD3 showed lower migration and invasion abilities (P<0.05), and the absence of SMYD3 halted cells in G2/M phase and activated the ATM pathway. Furthermore, the opposite patterns were observed when SMYD3 was elevated in normal gastric cells. Conclusions To the best of our knowledge, this study provides the first evidence that the absence of SMYD3 could inhibit the migration, invasion, and proliferation of gastric cancer cells and halt cells in G2/M phase via the ATM-CHK2/p53-Cdc25C pathway. These findings indicated that SMYD3 plays crucial roles in the proliferation, migration, and invasion of gastric cancer cells and may be a useful therapeutic target in human gastric carcinomas.
Journal of the Science of Food and Agriculture | 2017
Cuiqiong Wang; Zhongyuan Li; Hui Wang; Haiyan Qiu; Minghui Zhang; Shuang Li; Xue-Gang Luo; Yajian Song; Hao Zhou; Wenjian Ma; Tong-Cun Zhang
BACKGROUND Contamination of food and feed by aflatoxin B1 (AFB1) poses serious economic and health problems worldwide, so the development of biological methods for effective AFB1 degradation is strongly required. RESULTS Among three AFB1-degrading microorganisms isolated from moldy peanut, Fusarium sp. WCQ3361 could remove AFB1 extremely effectively, with a degradation ratio of 70.20% after 1 min and 95.38% after 24 h. Its degradation ratio was not much affected by temperature change (0-90 °C) and it also displayed excellent thermostability, maintaining 99.40% residual activity after boiling for 10 min. Since protease K could reduce the AFB1 degradation ratio by 55.15%, it is proposed that the effective component for AFB1 degradation is a protein. The AFB1 degradation ability of Fusarium sp. WCQ3361 was further verified by feed stock detoxification and the MTT test with HepG2 cells. In addition, no degradation products were detected by preliminary liquid chromatography/mass spectrometry, suggesting that AFB1 might be metabolized to products with different chemical characteristics from AFB1. CONCLUSION Fusarium sp. WCQ3361 is the first reported AFB1 degradation fungus belonging to the genus Fusarium with broad working temperature range, excellent thermostability and high activity, which provides a potential highly useful solution for dealing with AFB1 contamination in the human diet and animal feed.
Oncotarget | 2018
Tie-Feng Song; Liwen Huang; Ying Yuan; Huiqin Wang; Hongpeng He; Wenjian Ma; Lihong Huo; Hao Zhou; Nan Wang; Tong-Cun Zhang
Vascular smooth muscle cells (VSMCs), switching from a differentiated to a proliferative phenotype, contribute to various vascular diseases. However, the role of long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 MALAT1 in the phenotype switching of VSMCs remains unclear. Here, we report that the knockdown of MALAT1 promotes the transformation of smooth muscle cells from a proliferative phenotype to a differentiated phenotype. MALAT1 knockdown inhibited cellular proliferation and migration, leading to significant cell cycle arrest in the G2 phase. MALAT1 was downregulated in bone morphogenetic protein-7 (BMP-7)-induced cellular differentiation, while MALAT1 was upregulated in platelet-derived growth factor-BB (PDGF-BB)-induced cellular proliferation. PDGF induced the transformation of smooth muscle cells into a proliferative phenotype accompanied by an increase in autophagy. The downregulation of MALAT1 attenuated PDGF-BB-induced proliferation and migration by inhibiting autophagy. MALAT1 could act as a competing endogenous RNA (ceRNA) to regulate autophagy-related 7 (ATG7) gene expression by sponging miR142-3p. The present study reveals a novel mechanism by which MALAT1 promotes the transformation of smooth muscle cells from contraction to synthetic phenotypes.
Oncotarget | 2018
Hongpeng He; Fu Du; Yongping He; Zhaoqiang Wei; Chao Meng; Yuexin Xu; Hao Zhou; Nan Wang; Xue-Gang Luo; Wenjian Ma; Tong-Cun Zhang
MRTF-A is a transcriptional co-activator being critical for multiple processes including tissue fibrosis and cancer metastasis. The Rho-actin signaling stimulates the nuclear translocation and transcriptional activity of MRTF-A with little effect on the expression of MRTF-A gene. High expression of MRTF-A was observed in pancreatic cancer tissues and in TGF-β treated breast cancer cells. However, the mechanism for the upregulation of MRTF-A gene remains unclear. In this study, we showed that the transcription of MRTF-A was regulated by the Wnt-β-catenin signaling in breast cancer cells. LiCl treatment, Wnt3a treatment or β-catenin overexpression enhanced the transcription of MRTF-A gene. In agreement, depletion of β-catenin with siRNA diminished MRTF-A transcription. With ChIP assays, β-catenin was identified to interact with the MRTF-A promoter whereby it increased histone H4 acetylation and RNA polymerase II association. Further, results of RT-qPCR and Western-blotting supported that the transcriptional co-activator activity of MRTF-A was controlled by both the Rho-actin and the Wnt-β-catenin signaling pathways. MRTF-A was required for cell migration stimulated by the Wnt-β-catenin signaling. Taken together, our results suggest that MRTF-A integrates the Rho-actin and the Wnt-β-catenin signaling to regulate migration-related genes and consequently increases the mobility of breast cancer cells.
Journal of Applied Biomaterials & Functional Materials | 2018
Qingxi Liu; Zijiang Zhang; Yupeng Liu; Zhanfeng Cui; Tong-Cun Zhang; Zhaohui Li; Wenjian Ma
Introduction: Three-dimensional (3D) collagen scaffold models, due to their ability to mimic the tissue and organ structure in vivo, have received increasing interest in drug discovery and toxicity evaluation. Methods: In this study, we developed a perfused 3D model and studied cellular response to cytotoxic drugs in comparison with traditional 2D cell cultures as evaluated by cancer drug cisplatin. Results: Cancer cells grown in perfused 3D environments showed increased levels of reactive oxygen species (ROS) production compared to the 2D culture. As determined by growth analysis, cells in the 3D culture, after forming a spheroid, were more resistant to the cancer drug cisplatin compared to that of the 2D cell culture. In addition, 3D culturing cells showed elevated level of ROS, indicating a physiological change or the formation of a microenvironment that resembles tumor cells in vivo. Conclusions: These data revealed that cellular response to drugs for cells growing in 3D environments are dramatically different from that of 2D cultured cells. Thus, the perfused 3D collagen scaffold model we report here might be a potentially very useful tool for drug analysis.