Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenjie Peng is active.

Publication


Featured researches published by Wenjie Peng.


Immunity | 2014

Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers.

Claudia Blattner; Jeong Hyun Lee; Kwinten Sliepen; Ronald Derking; Emilia Falkowska; Alba Torrents de la Peña; Albert Cupo; Jean-Philippe Julien; Marit J. van Gils; Peter S. Lee; Wenjie Peng; James C. Paulson; Pascal Poignard; Dennis R. Burton; John P. Moore; Rogier W. Sanders; Ian A. Wilson; Andrew B. Ward

All previously characterized broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) target one of four major sites of vulnerability. Here, we define and structurally characterize a unique epitope on Env that is recognized by a recently discovered family of human monoclonal antibodies (PGT151-PGT158). The PGT151 epitope is comprised of residues and glycans at the interface of gp41 and gp120 within a single protomer and glycans from both subunits of a second protomer and represents a neutralizing epitope that is dependent on both gp120 and gp41. Because PGT151 binds only to properly formed, cleaved trimers, this distinctive property, and its ability to stabilize Env trimers, has enabled the successful purification of mature, cleaved Env trimers from the cell surface as a complex with PGT151. Here we compare the structural and functional properties of membrane-extracted Env trimers from several clades with those of the soluble, cleaved SOSIP gp140 trimer.


Science | 2013

A General Strategy for the Chemoenzymatic Synthesis of Asymmetrically Branched N-Glycans

Zhen Wang; Zoeisha S. Chinoy; Shailesh G. Ambre; Wenjie Peng; Ryan McBride; Robert P. de Vries; John Glushka; James C. Paulson; Geert-Jan Boons

Sweet Variety Proteins fold into a great variety of shapes—but, topologically, they always start as a more or less straight line of linked amino acids. In contrast, carbohydrates manifest a range of structures in which the sugar building blocks connect through multiple branch points. Wang et al. (p. 379, published online 26 July; see the Perspective by Kiessling and Kraft) designed a versatile precursor that could be transformed into many different branched glycans with distinct building blocks along each branch. Oligosaccharides synthesized from a versatile common precursor can be used to probe protein-carbohydrate interactions. [Also see Perspective by Kiessling and Kraft] A systematic, efficient means of producing diverse libraries of asymmetrically branched N-glycans is needed to investigate the specificities and biology of glycan-binding proteins. To that end, we describe a core pentasaccharide that at potential branching positions is modified by orthogonal protecting groups to allow selective attachment of specific saccharide moieties by chemical glycosylation. The appendages were selected so that the antenna of the resulting deprotected compounds could be selectively extended by glycosyltransferases to give libraries of asymmetrical multi-antennary glycans. The power of the methodology was demonstrated by the preparation of a series of complex oligosaccharides that were printed as microarrays and screened for binding to lectins and influenza-virus hemagglutinins, which showed that recognition is modulated by presentation of minimal epitopes in the context of complex N-glycans.


Angewandte Chemie | 2012

Recognition of Sialylated Poly‐N‐acetyllactosamine Chains on N‐ and O‐Linked Glycans by Human and Avian Influenza A Virus Hemagglutinins

Corwin M. Nycholat; Ryan McBride; Damian C. Ekiert; Rui Xu; Janani Rangarajan; Wenjie Peng; Nahid Razi; Michel Gilbert; Warren W. Wakarchuk; Ian A. Wilson; James C. Paulson

Human influenza viruses are proposed to recognize sialic acids (pink diamonds) on glycans extended with poly-LacNAc chains (LacNAc=(yellow circle+blue square)). N- and O-linked glycans were extended with different poly-LacNAc chains with α2-3- and α2-6-linked sialic acids recognized by human and avian influenza viruses, respectively. The specificity of recombinant hemagglutinins (receptors in green) was investigated by using glycan microarray technology.


Journal of the American Chemical Society | 2013

Synthesis of biologically active N- and O-linked glycans with multisialylated poly-N-acetyllactosamine extensions using P. damsela α2-6 sialyltransferase.

Corwin M. Nycholat; Wenjie Peng; Ryan McBride; Aristotelis Antonopoulos; Robert P. de Vries; Zinaida Polonskaya; M. G. Finn; Anne Dell; Stuart M. Haslam; James C. Paulson

Sialosides on N- and O-linked glycoproteins play a fundamental role in many biological processes, and synthetic glycan probes have proven to be valuable tools for elucidating these functions. Though sialic acids are typically found α2-3- or α2-6-linked to a terminal nonreducing end galactose, poly-LacNAc extended core-3 O-linked glycans isolated from rat salivary glands and human colonic mucins have been reported to contain multiple internal Neu5Acα2-6Gal epitopes. Here, we have developed an efficient approach for the synthesis of a library of N- and O-linked glycans with multisialylated poly-LacNAc extensions, including naturally occurring multisialylated core-3 O-linked glycans. We have found that a recombinant α2-6 sialyltransferase from Photobacterium damsela (Pd2,6ST) exhibits unique regioselectivity and is able to sialylate internal galactose residues in poly-LacNAc extended glycans which was confirmed by MS/MS analysis. Using a glycan microarray displaying this library, we found that Neu5Acα2-6Gal specific influenza virus hemagglutinins, siglecs, and plant lectins are largely unaffected by adjacent internal sialylation, and in several cases the internal sialic acids are recognized as ligands. Polyclonal IgY antibodies specific for internal sialoside epitopes were elicited in inoculated chickens.


Glycobiology | 2012

Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans

Wenjie Peng; Jennifer Pranskevich; Corwin M. Nycholat; Michel Gilbert; Warren W. Wakarchuk; James C. Paulson; Nahid Razi

Poly-N-acetyllactosamine extensions on N- and O-linked glycans are increasingly recognized as biologically important structural features, but access to these structures has not been widely available. Here, we report a detailed substrate specificity and catalytic efficiency of the bacterial β3-N-acetylglucosaminyltransferase (β3GlcNAcT) from Helicobacter pylori that can be adapted to the synthesis of a rich diversity of glycans with poly-LacNAc extensions. This glycosyltransferase has surprisingly broad acceptor specificity toward type-1, -2, -3 and -4 galactoside motifs on both linear and branched glycans, found commonly on N-linked, O-linked and I-antigen glycans. This finding enables the production of complex ligands for glycan-binding studies. Although the enzyme shows preferential activity for type 2 (Galβ1-4GlcNAc) acceptors, it is capable of transferring N-acetylglucosamine (GlcNAc) in β1-3 linkage to type-1 (Galβ1-3GlcNAc) or type-3/4 (Galβ1-3GalNAcα/β) sequences. Thus, by alternating the use of the H. pylori β3GlcNAcT with galactosyltransferases that make the β1-4 or β1-3 linkages, various N-linked, O-linked and I-antigen acceptors could be elongated with type-2 and type-1 LacNAc repeats. Finally, one-pot incubation of di-LacNAc biantennary N-glycopeptide with the β3GlcNAcT and GalT-1 in the presence of uridine diphosphate (UDP)-GlcNAc and UDP-Gal, yielded products with 15 additional LacNAc units on the precursor, which was seen as a series of sequential ion peaks representing alternative additions of GlcNAc and Gal residues, on matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Overall, our data demonstrate a broader substrate specificity for the H. pylori β3GlcNAcT than previously recognized and demonstrate its ability as a potent resource for preparative chemo-enzymatic synthesis of complex glycans.


PLOS Pathogens | 2017

Three mutations switch H7N9 influenza to human-type receptor specificity.

Robert P. de Vries; Wenjie Peng; Oliver C. Grant; Andrew J. Thompson; Xueyong Zhu; Kim M. Bouwman; Alba Torrents de la Peña; Mariëlle J. van Breemen; Iresha N. Ambepitiya Wickramasinghe; Cornelis A. M. de Haan; Wenli Yu; Ryan McBride; Rogier W. Sanders; Robert J. Woods; Monique H. Verheije; Ian A. Wilson; James C. Paulson

The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.


Emerging Infectious Diseases | 2017

Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor-Binding Specificity.

Hongbo Guo; Erik de Vries; Ryan McBride; Jojanneke Dekkers; Wenjie Peng; Kim M. Bouwman; Corwin M. Nycholat; M. Hélène Verheije; James C. Paulson; Frank J. M. van Kuppeveld; Cornelis A. M. de Haan

Emergence and intercontinental spread of highly pathogenic avian influenza A(H5Nx) virus clade 2.3.4.4 is unprecedented. H5N8 and H5N2 viruses have caused major economic losses in the poultry industry in Europe and North America, and lethal human infections with H5N6 virus have occurred in Asia. Knowledge of the evolution of receptor-binding specificity of these viruses, which might affect host range, is urgently needed. We report that emergence of these viruses is accompanied by a change in receptor-binding specificity. In contrast to ancestral clade 2.3.4 H5 proteins, novel clade 2.3.4.4 H5 proteins bind to fucosylated sialosides because of substitutions K222Q and S227R, which are unique for highly pathogenic influenza virus H5 proteins. North American clade 2.3.4.4 virus isolates have retained only the K222Q substitution but still bind fucosylated sialosides. Altered receptor-binding specificity of virus clade 2.3.4.4 H5 proteins might have contributed to emergence and spread of H5Nx viruses.


Journal of Biological Chemistry | 2015

Unmasking of CD22 Co-receptor on Germinal Center B-cells Occurs by Alternative Mechanisms in Mouse and Man

Matthew S. Macauley; Norihito Kawasaki; Wenjie Peng; Shui-Hua Wang; Yuan He; Britni M. Arlian; Ryan McBride; Reiji Kannagi; Kay-Hooi Khoo; James C. Paulson

Background: Changes in glycosylation on germinal center B-cells have the potential to influence CD22. Results: CD22 is unmasked on germinal centers due to loss of its preferred ligand. Conclusion: Different biosynthetic mechanisms in mice and humans down-regulate the preferred CD22 ligand on germinal center B-cells. Significance: Conserved unmasking of CD22 on germinal center B-cells from mice and humans suggests an important role for CD22 in the germinal center. CD22 is an inhibitory B-cell co-receptor whose function is modulated by sialic acid (Sia)-bearing glycan ligands. Glycan remodeling in the germinal center (GC) alters CD22 ligands, with as yet no ascribed biological consequence. Here, we show in both mice and humans that loss of high affinity ligands on GC B-cells unmasks the binding site of CD22 relative to naive and memory B-cells, promoting recognition of trans ligands. The conserved modulation of CD22 ligands on GC B-cells is striking because high affinity glycan ligands of CD22 are species-specific. In both species, the high affinity ligand is based on the sequence Siaα2–6Galβ1–4GlcNAc, which terminates N-glycans. The human ligand has N-acetylneuraminic acid (Neu5Ac) as the sialic acid, and the high affinity ligand on naive B-cells contains 6-O-sulfate on the GlcNAc. On human GC B-cells, this sulfate modification is lost, giving rise to lower affinity CD22 ligands. Ligands of CD22 on naive murine B-cells do not contain the 6-O-sulfate modification. Instead, the high affinity ligand for mouse CD22 has N-glycolylneuraminic acid (Neu5Gc) as the sialic acid, which is replaced on GC B-cells with Neu5Ac. Human naive and memory B-cells express sulfated glycans as high affinity CD22 ligands, which are lost on GC B-cells. In mice, Neu5Gc-containing glycans serve as high affinity CD22 ligands that are replaced by Neu5Ac-containing glycans on GC B-cells. Our results demonstrate that loss of high affinity CD22 ligands on GC B-cells occurs in both mice and humans through alternative mechanisms, unmasking CD22 relative to naive and memory B-cells.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein

Wentao Li; Ruben J. G. Hulswit; Ivy Widjaja; V. Stalin Raj; Ryan McBride; Wenjie Peng; W. Widagdo; M. Alejandra Tortorici; Brenda van Dieren; Yifei Lang; Jan W. M. van Lent; James C. Paulson; Cornelis A. M. de Haan; Raoul J. de Groot; Frank J. M. van Kuppeveld; Bart L. Haagmans; Berend Jan Bosch

Significance Middle East respiratory syndrome coronavirus (MERS-CoV) recurrently infects humans from its dromedary camel reservoir, causing severe respiratory disease with an ∼35% fatality rate. The virus binds to the dipeptidyl peptidase 4 (DPP4) entry receptor on respiratory epithelial cells via its spike protein. We here report that the MERS-CoV spike protein selectively binds to sialic acid (Sia) and demonstrate that cell-surface sialoglycoconjugates can serve as an attachment factor. Our observations warrant further research into the role of Sia binding in the virus’s host and tissue tropism and transmission, which may be influenced by the observed Sia-binding fine specificity and by differences in sialoglycomes among host species. Middle East respiratory syndrome coronavirus (MERS-CoV) targets the epithelial cells of the respiratory tract both in humans and in its natural host, the dromedary camel. Virion attachment to host cells is mediated by 20-nm-long homotrimers of spike envelope protein S. The N-terminal subunit of each S protomer, called S1, folds into four distinct domains designated S1A through S1D. Binding of MERS-CoV to the cell surface entry receptor dipeptidyl peptidase 4 (DPP4) occurs via S1B. We now demonstrate that in addition to DPP4, MERS-CoV binds to sialic acid (Sia). Initially demonstrated by hemagglutination assay with human erythrocytes and intact virus, MERS-CoV Sia-binding activity was assigned to S subdomain S1A. When multivalently displayed on nanoparticles, S1 or S1A bound to human erythrocytes and to human mucin in a strictly Sia-dependent fashion. Glycan array analysis revealed a preference for α2,3-linked Sias over α2,6-linked Sias, which correlates with the differential distribution of α2,3-linked Sias and the predominant sites of MERS-CoV replication in the upper and lower respiratory tracts of camels and humans, respectively. Binding is hampered by Sia modifications such as 5-N-glycolylation and (7,)9-O-acetylation. Depletion of cell surface Sia by neuraminidase treatment inhibited MERS-CoV entry of Calu-3 human airway cells, thus providing direct evidence that virus–Sia interactions may aid in virion attachment. The combined observations lead us to propose that high-specificity, low-affinity attachment of MERS-CoV to sialoglycans during the preattachment or early attachment phase may form another determinant governing the host range and tissue tropism of this zoonotic pathogen.


Archives of Virology | 2016

Amino acid residues at positions 222 and 227 of the hemagglutinin together with the neuraminidase determine binding of H5 avian influenza viruses to sialyl Lewis X

Takahiro Hiono; Masatoshi Okamatsu; Manabu Igarashi; Ryan McBride; Robert P. de Vries; Wenjie Peng; James C. Paulson; Yoshihiro Sakoda; Hiroshi Kida

Influenza viruses isolated from ducks are rarely able to infect chickens; it is therefore postulated that these viruses need to adapt in some way to be able to be transmitted to chickens in nature. Previous studies revealed that sialyl Lewis X (3′SLeX), which is fucosylated α2,3 sialoside, was predominantly detected on the epithelial cells of the chicken trachea, whereas this glycan structure is not found in the duck intestinal tract. To clarify the mechanisms of the interspecies transmission of influenza viruses between ducks and chickens, we compared the receptor specificity of low-pathogenic avian influenza viruses isolated from these two species. Glycan-binding analysis of the recombinant hemagglutinin (HA) of a chicken influenza virus, A/chicken/Ibaraki/1/2005 (H5N2), revealed a binding preference to α1,3 fucosylated sialosides. On the other hand, the HA of a duck influenza virus, A/duck/Mongolia/54/2001 (H5N2) (Dk/MNG), particularly bound to non-fucosylated α2,3 sialosides such as 3′-sialyllactosamine (3′SLacNAc). Computational analysis along with binding analysis of the mutant HAs revealed that this glycan-binding specificity of the HA was determined by amino acid residues at positions 222 and 227. Inconsistent with the glycan-binding specificity of the recombinant HA protein, virions of Dk/MNG bound to both 3′SLacNAc and 3′SLeX. Glycan-binding analysis in the presence of a neuraminidase (NA) inhibitor revealed that the NA conferred binding to 3′SLeX to virions of Dk/MNG. The present results reveal the molecular basis of the interaction between fucosylated α2,3 sialosides and influenza viruses.

Collaboration


Dive into the Wenjie Peng's collaboration.

Top Co-Authors

Avatar

James C. Paulson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ryan McBride

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian A. Wilson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nahid Razi

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge