Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenjie Wang is active.

Publication


Featured researches published by Wenjie Wang.


Journal of Physical Chemistry B | 2012

Regulation of the Electric Charge in Phosphatidic Acid Domains

Wenjie Wang; Nathaniel A. Anderson; Alex Travesset; David Vaknin

Although a minor component of the lipidome, phosphatidic acid (PA) plays a crucial role in nearly all signaling pathways involving cell membranes, in part because of its variable electrical charge in response to environmental conditions. To investigate how charge is regulated in domains of PA, we applied surface-sensitive X-ray reflectivity and fluorescence near-total-reflection techniques to determine the binding of divalent ions (Ca(2+) at various pH values) to 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA) and to the simpler lipid dihexadecyl phosphate (DHDP) spread as monolayers at the air/water interface. We found that the protonation state of PA is controlled not only by the pK(a) and local pH but also by the strong affinity to PA driven by electrostatic correlations from divalent ions and the cooperative effect of the two dissociable protons, which dramatically enhance the surface charge. A precise theoretical model is presented providing a general framework to predict the protonation state of PA. Implications for recent experiments on charge regulation by hydrogen bonding and the role of pH in PA signaling are discussed in detail.


Langmuir | 2012

Interfacial properties and iron binding to bacterial proteins that promote the growth of magnetite nanocrystals: X-ray reflectivity and surface spectroscopy studies.

Wenjie Wang; Wei Bu; Lijun Wang; Pierre E. Palo; Surya K. Mallapragada; Marit Nilsen-Hamilton; David Vaknin

Surface sensitive X-ray scattering and spectroscopic studies have been conducted to determine structural properties of Mms6, the protein in Magnetospirillum magneticum AMB-1 that is implicated as promoter of magnetite nanocrystals growth. Surface pressure versus molecular area isotherms indicate Mms6 forms stable monolayers at the aqueous/vapor interface that are strongly affected by ionic conditions of the subphase. Analysis of X-ray reflectivity from the monolayers shows that the protein conformation at the interface depends on surface pressure and on the presence of ions in the solutions, in particular of iron ions and its complexes. X-ray fluorescence at grazing angles of incidence from the same monolayers allows quantitative determination of surface bound ions to the protein showing that ferric iron binds to Mms6 at higher densities compared to other ions such as Fe(2+) or La(3+) under similar buffer conditions.


Langmuir | 2011

Ionic Specificity in pH Regulated Charged Interfaces: Fe3+versus La3+

Wenjie Wang; Rebecca Y. Park; David H. Meyer; Alex Travesset; David Vaknin

We determine the distribution of two trivalent ions Fe(3+) and La(3+) next to two different amphiphilic charged interfaces as ions or complexes, consisting of the phosphate lipid dihexadecyl phosphate (DHDP) and the fatty acid arachidic acid (AA). These amphiphiles provide a wide range of pK(a) values, from 2.1 (DHDP) to 5.1 (AA), thus allowing manipulation of the surface charge over extremely low pH (pH ∼1 or larger), and the two ions provide two limiting cases of specificity for the amphiphiles. We find that La(3+) distribution is mostly sensitive to the surface charge, whereas the Fe(3+) binding depends on its character in the solution and is highly specific, as indicated by the crucial role played by iron complexes (Fe(OH)(3) or Fe(OH)(2+)) forming covalent bonds even for an uncharged interface. The implications of the results to other ions and/or amphiphilic interfaces are also discussed.


Langmuir | 2015

Morphological transformations in the magnetite biomineralizing protein Mms6 in iron solutions: a small-angle X-ray scattering study.

Honghu Zhang; Xunpei Liu; Shuren Feng; Wenjie Wang; Klaus Schmidt-Rohr; Mufit Akinc; Marit Nilsen-Hamilton; David Vaknin; Surya K. Mallapragada

Magnetotactic bacteria that produce magnetic nanocrystals of uniform size and well-defined morphologies have inspired the use of biomineralization protein Mms6 to promote formation of uniform magnetic nanocrystals in vitro. Small angle X-ray scattering (SAXS) studies in physiological solutions reveal that Mms6 forms compact globular three-dimensional (3D) micelles (approximately 10 nm in diameter) that are, to a large extent, independent of concentration. In the presence of iron ions in the solutions, the general micellar morphology is preserved, however, with associations among micelles that are induced by iron ions. Compared with Mms6, the m2Mms6 mutant (with the sequence of hydroxyl/carboxyl containing residues in the C-terminal domain shuffled) exhibits subtle morphological changes in the presence of iron ions in solutions. The analysis of the SAXS data is consistent with a hierarchical core-corona micellar structure similar to that found in amphiphilic polymers. The addition of ferric and ferrous iron ions to the protein solution induces morphological changes in the micellar structure by transforming the 3D micelles into objects of reduced dimensionality of 2, with fractal-like characteristics (including Gaussian-chain-like) or, alternatively, platelet-like structures.


Scientific Reports | 2016

Assembling Bare Au Nanoparticles at Positively Charged Templates

Wenjie Wang; Honghu Zhang; Ivan Kuzmenko; Surya K. Mallapragada; David Vaknin

In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), display less in-plane regular packing compared to bare AuNPs.


Journal of Colloid and Interface Science | 2012

Amorphous iron-(hydr) oxide networks at liquid/vapor interfaces: In situ X-ray scattering and spectroscopy studies

Wenjie Wang; Jacob Pleasants; Wei Bu; Rebecca Y. Park; Ivan Kuzmenko; David Vaknin

Surface sensitive X-ray reflectivity (XR), fluorescence (XF), and grazing incidence X-ray diffraction (GIXD) experiments were conducted to determine the accumulation of ferric iron Fe (III) or ferrous iron Fe (II) under dihexadecyl phosphate (DHDP) or arachidic acid (AA) Langmuir monolayers at liquid/vapor interfaces. Analysis of the X-ray reflectivity and fluorescence data of monolayers on the aqueous subphases containing FeCl(3) indicates remarkably high levels of surface-bound Fe (III) in number of Fe(3+) ions per molecule (DHDP or AA) that exceed the amount necessary to neutralize a hypothetically completely deprotonated monolayer (DHDP or AA). These results suggest that nano-scale iron (hydr) oxide complexes (oxides, hydroxides or oxyhydroxides) bind to the headgroups and effectively overcompensate the maximum possible charges at the interface. The lack of evidence of in-plane ordering in GIXD measurements and strong effects on the surface-pressure versus molecular area isotherms indicate that an amorphous network of iron (hydr) oxide complexes contiguous to the headgroups is formed. Similar experiments with FeCl(2) generally resulted with the oxidation of Fe (II)-Fe (III) which consequently leads to ferric Fe (III) complexes binding albeit with less iron at the interface. Controlling the oxidation of Fe (II) changes the nature and amount of binding significantly. The implications to biomineralization of iron (hydr) oxides are briefly discussed.


ACS Applied Materials & Interfaces | 2017

Tailoring Nanoscale Morphology of Polymer:Fullerene Blends Using Electrostatic Field

Moneim Elshobaki; Ryan S. Gebhardt; John A. Carr; William R. Lindemann; Wenjie Wang; Eric Grieser; Swaminathan Venkatesan; Evan C. Ngo; Ujjal Bhattacharjee; Joseph Strzalka; Zhang Jiang; Qiquan Qiao; Jacob W. Petrich; David Vaknin; Sumit Chaudhary

To tailor the nanomorphology in polymer/fullerene blends, we study the effect of electrostatic field (E-field) on the solidification of poly(3-hexylthiophene-2, 5-diyl) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) bulk heterojunction (BHJ). In addition to control; wet P3HT:PC60BM thin films were exposed to E-field of Van de Graaff (VDG) generator at three different directions-horizontal (H), tilted (T), and vertical (V)-relative to the plane of the substrate. Surface and bulk characterizations of the field-treated BHJs affirmed that fullerene molecules can easily penetrate the spaghetti-like P3HT and move up and down following the E-field. Using E-field treatment, we achieved favorable morphologies with efficient charge separation, transport, and collection. We improve; (1) the hole mobility values up to 19.4 × 10-4 ± 1.6 × 10-4 cm2 V-1 s-1 and (2) the power conversion efficiency (PCE) of conventional and inverted OPVs up to 2.58 ± 0.02% and 4.1 ± 0.40%, respectively. This E-field approach can serve as a new morphology-tuning technique, which is generally applicable to other polymer-fullerene systems.


Langmuir | 2017

Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles

Honghu Zhang; Srikanth Nayak; Wenjie Wang; Surya K. Mallapragada; David Vaknin

We report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor-liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor-liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to the protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.


RSC Advances | 2016

Binding of calixarene-based Langmuir monolayers to mercury chloride is dependent on the amphiphile structure

Ludovico G. Tulli; Wenjie Wang; Vanessa Rullaud; William R. Lindemann; Ivan Kuzmenko; David Vaknin; Patrick Shahgaldian

Two amphiphilic calix[4]arenes bearing four dodecyl chains at the lower rim and two amino functions (vicinal and distal) at the para-phenolic positions have been synthesized. Surface-pressure versus molecular-area isotherms reveal that Langmuir monolayers of the two regioisomers show considerably distinct self-assembly behaviors at the air–water interface. Compression isotherms, Brewster angle microscopy and synchrotron-based X-ray near-total-reflection fluorescence, X-ray reflectivity and grazing incidence X-ray diffraction reveal that the monolayers of the two diamino calix[4]arene derivatives and those of their structural analogues bearing four amino moieties in para positions exhibit significant differences in their binding properties towards HgCl2 despite the structural and functional similarity among the macrocycles.


Langmuir | 2018

Two-Dimensional Crystallization of Poly(N-isopropylacrylamide)-Capped Gold Nanoparticles

Wenjie Wang; Jack J. Lawrence; Wei Bu; Honghu Zhang; David Vaknin

Surface-sensitive X-ray reflectivity and grazing incidence small-angle X-ray scattering reveal the structure of polymer-capped-gold nanoparticles (AuNPs that are grafted with poly( N-isopropylacrylamide); PNIPAM-AuNPs) as they self-assemble and crystallize at the aqueous suspension/vapor interface. Citrate-stabilized AuNPs (5 and 10 nm in nominal diameter) are ligand-exchanged by 6 kDa PNIPAM-thiol to form corona brushes around the AuNPs that are highly stable and dispersed in aqueous suspensions. Surprisingly, no clear evidence of thermosensitive effect on surface enrichment or self-assembly of the PNIPAM-AuNPs is observed in the 10-35 °C temperature range. However, addition of simple salts (in this case, NaCl) to the suspension induces migration of the PNIPAM-AuNPs to the aqueous surface, and above a threshold salt concentration, two-dimensional crystals are formed. The 10 nm PNIPAM-AuNPs form a highly ordered single layer with in-plane triangular structure, whereas the 5 nm capped NPs form short-range triangular structure that gradually becomes denser as salt concentration increases.

Collaboration


Dive into the Wenjie Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Kuzmenko

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Bu

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

J. Shinar

Iowa State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge