Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenjing Sun is active.

Publication


Featured researches published by Wenjing Sun.


Journal of Biological Chemistry | 2010

Ubiquitin-specific Peptidase 21 Inhibits Tumor Necrosis Factor α-induced Nuclear Factor κB Activation via Binding to and Deubiquitinating Receptor-interacting Protein 1

Gufeng Xu; Xiaojie Tan; Hongmei Wang; Wenjing Sun; Yi Shi; Susan Burlingame; Xue Gu; Guangwen Cao; Ting Zhang; Jun Qin; Jianhua Yang

Ubiquitination and deubiquitination of receptor-interacting protein 1 (RIP1) play an important role in the positive and negative regulation of the tumor necrosis factor α (TNFα)-induced nuclear factor κB (NF-κB) activation. Using a combination of functional genomic and proteomic approaches, we have identified ubiquitin-specific peptidase 21 (USP21) as a deubiquitinase for RIP1. USP21 is constitutively associated with RIP1 and deubiquitinates RIP1 in vitro and in vivo. Notably, knockdown of USP21 in HeLa cells enhances TNFα-induced RIP1 ubiquitination, IκB kinase β (IKKβ), and NF-κB phosphorylation, inhibitor of NF-κB α (IκBα) phosphorylation and ubiquitination, as well as NF-κB-dependent gene expression. Therefore, our results demonstrate that USP21 plays an important role in the down-regulation of TNFα-induced NF-κB activation through deubiquitinating RIP1.


Journal of Biological Chemistry | 2008

Phosphorylation of Thr-178 and Thr-184 in the TAK1 T-loop Is Required for Interleukin (IL)-1-mediated Optimal NFκB and AP-1 Activation as Well as IL-6 Gene Expression

Yang Yu; Ningling Ge; Min Xie; Wenjing Sun; Susan Burlingame; Amy K. Pass; Jed G. Nuchtern; Dekai Zhang; Songbin Fu; Michael D. Schneider; Jia Fan; Jianhua Yang

TAK1 (transforming growth factor-β-activated kinase 1), a mitogen-activated protein kinase kinase kinase, is activated by various cytokines, including interleukin-1 (IL-1). However, the precise regulation for TAK1 activation at the molecular level is still not fully understood. Here we report that dual phosphorylation of Thr-178 and Thr-184 residues within the kinase activation loop of TAK1 is essential for TAK1-mediated NFκB and AP-1 activation. Once co-overexpressed with TAB1, TAK1 mutant with alanine substitution of these two residues fails to activate IKKβ-mediated NFκB and JNK-mediated AP-1, whereas TAK1 mutant with replacement of these two sites with acidic residues acts like the TAK1 wild type. Consistently, TAK1 mutant with alanine substitution of these two residues severely inhibits IL-1-induced NFκB and AP-1 activities, whereas TAK1 mutant with replacement of these two sites with acidic residues slightly enhances IL-1-induced NFκB and AP-1 activities compared with the TAK1 wild-type. IL-1 induces the phosphorylation of endogenous TAK1 at Thr-178 and Thr-184. Reconstitution of TAK1-deficient mouse embryo fibroblast cells with wild-type TAK1 or a TAK1 mutant containing threonine 178 and 184 to alanine mutations revealed the importance of these two sites in IL-1-mediated IKK-NFκB and JNK-AP-1 activation as well as IL-1-induced IL-6 gene expression. Our finding is the first report that substitution of key serine/threonine residues with acidic residues mimics the phosphorylated state of TAK1 and renders TAK1 active during its induced activation.


Cellular Signalling | 2009

PPM1A and PPM1B act as IKKβ phosphatases to terminate TNFα-induced IKKβ-NF-κB activation

Wenjing Sun; Yang Yu; Gianpietro Dotti; Tao Shen; Xiaojie Tan; Barbara Savoldo; Amy K. Pass; Meijin Chu; Dekai Zhang; Xiongbin Lu; Songbin Fu; Xia Lin; Jianhua Yang

IKKbeta serves as a central intermediate signaling molecule in the activation of the NF-kappaB pathway. However, the precise mechanism for the termination of IKKbeta activity is still not fully understood. Using a functional genomic approach, we have identified two protein serine/threonine phosphatases, PPM1A and PPM1B, as IKKbeta phosphatases. Overexpression of PPM1A or PPM1B results in dephosphorylation of IKKbeta at Ser177 and Ser181 and termination of IKKbeta-induced NF-kappaB activation. PPM1A and PPM1B associate with the phosphorylated form of IKKbeta, and the interaction between PPM1A/PPM1B and IKKbeta is induced by TNFalpha in a transient fashion in the cells. Furthermore, knockdown of PPM1A and PPM1B expression enhances TNFalpha-induced IKKbeta phosphorylation, NF-kappaB nuclear translocation and NF-kappaB-dependent gene expression. These data suggest that PPM1A and PPM1B play an important role in the termination of TNFalpha-mediated NF-kappaB activation through dephosphorylating and inactivating IKKbeta.


The Journal of Pathology | 2009

Reduced expression and novel splice variants of ING4 in human gastric adenocarcinoma

Ming Li; Yan Jin; Wenjing Sun; Yang Yu; Jing Bai; Dandan Tong; Jiping Qi; Jin-rong Du; Jingshu Geng; Qi Huang; Xiaoyi Huang; Yun Huang; Fei-fei Han; Xiangning Meng; Jesusa L. Rosales; Ki-Young Lee; Songbin Fu

ING4, a new member of the ING (inhibitor of growth) family of tumour suppressor genes, has been found to be deleted or down‐regulated in gliomas, breast tumours, and head and neck squamous cell carcinomas. The goal of the present study was to investigate whether the expression and alternative splicing of ING4 transcripts are involved in the initiation and progression of stomach adenocarcinoma. ING4 mRNA and protein expression was examined in gastric adenocarcinoma tissues and human gastric adenocarcinoma cell lines by RT‐PCR, real‐time RT‐PCR, tissue microarray immunohistochemistry, and western blot analysis. Alterations in ING4 transcripts were determined through sequence analysis of ING4 cDNA. Our data showed that ING4 mRNA and protein were dramatically reduced in stomach adenocarcinoma cell lines and tissues, and significantly less in female than in male patients. We also found that reduced ING4 mRNA expression correlated with the stage of the tumour. Interestingly, by sequence analysis, we discovered five novel aberrantly spliced variant forms of ING4_v1 and ING4_v2. These variants cause a codon frame‐shift and, eventually, deletion of the NLS or PHD domain contributing to the mislocalization of p53 and/or HAT/HDAC complexes and, subsequently, altered gene expression in gastric adenocarcinoma. These results suggest that attenuated and aberrant ING4 expression may be involved in the initiation and progression of stomach adenocarcinoma. Copyright


Cellular Signalling | 2009

MEKK3 is required for lysophosphatidic acid-induced NF-κB activation

Wenjing Sun; Hongxiu Li; Yang Yu; Yihui Fan; Brian C. Grabiner; Renfang Mao; Ningling Ge; Hong Zhang; Songbin Fu; Xin Lin; Jianhua Yang

Lysophosphatidic acid (LPA) is a potent agonist that exerts various cellular functions on many cell types through binding to its cognate G protein-coupled receptors (GPCRs). Although LPA induces NF-kappaB activation by acting on its GPCR receptor, the molecular mechanism of LPA receptor-mediated NF-kappaB activation remains to be well defined. In the present study, by using MEKK3-, TAK1-, and IKKbeta-deficient murine embryonic fibroblasts (MEFs), we found that MEKK3 but not TAK1 deficiency impairs LPA and protein kinase C (PKC)-induced IkappaB kinase (IKK)-NF-kappaB activation, and IKKbeta is required for PKC-induced NF-kappaB activation. In addition, we demonstrate that LPA and PKC-induced IL-6 and MIP-2 production are abolished in the absence of MEKK3 but not TAK1. Together, our results provide the genetic evidence that MEKK3 but not TAK1 is required for LPA receptor-mediated IKK-NF-kappaB activation.


Gene | 2014

Role of EZH2 in oral squamous cell carcinoma carcinogenesis

Lingbo Zhao; Yang Yu; Jie Wu; Jing Bai; Yuzhen Zhao; Chunming Li; Wenjing Sun; Xiumei Wang

Oral squamous cell carcinoma (OSCC) is a common human malignancy with high incidence rate and poor prognosis. Although the polycomb group protein enhancer of zeste homolog 2 (EZH2) plays a crucial role in cell proliferation and differentiation during the occurrence and development progress of several kinds of malignant tumors, the impact of EZH2 on the development and progression of OSCC is unclear. In this study, we demonstrate that EZH2 is overexpressed in OSCC cells and clinical tissue. With in vitro RNAi analysis, we generated stable EZH2 knocking down cell lines from two OSCC cell lines, with two sh-RNAs targeting to EZH2, respectively. We found that knocking down of EZH2 could decrease the proliferation ability and induce apoptosis of OSCC cells. Moreover, we demonstrated that of EZH2 inhibition decreased the migration and metastasis of OSCC cells. In conclusion, the results of the current study demonstrated an association between EZH2 expression and OSCC cell development. We recommend that EZH2 acts as an oncogene and plays an important role in OSCC carcinogenesis.


Scientific Reports | 2016

Novel ALK inhibitor AZD3463 inhibits neuroblastoma growth by overcoming crizotinib resistance and inducing apoptosis

Yongfeng Wang; Long Wang; Shan Guan; Wenming Cao; Hao Wang; Zhenghu Chen; Yanling Zhao; Yang Yu; Huiyuan Zhang; Jonathan C. Pang; Sophia L. Huang; Yo Akiyama; Yifan Yang; Wenjing Sun; Xin Xu; Yan Shi; Hong Zhang; Eugene S. Kim; Jodi A. Muscal; Fengmin Lu; Jianhua Yang

ALK receptor tyrosine kinase has been shown to be a therapeutic target in neuroblastoma. Germline ALK activating mutations are responsible for the majority of hereditary neuroblastoma and somatic ALK activating mutations are also frequently observed in sporadic cases of advanced NB. Crizotinib, a first-line therapy in the treatment of advanced non-small cell lung cancer (NSCLC) harboring ALK rearrangements, demonstrates striking efficacy against ALK-rearranged NB. However, crizotinib fails to effectively inhibit the activity of ALK when activating mutations are present within its kinase domain, as with the F1174L mutation. Here we show that a new ALK inhibitor AZD3463 effectively suppressed the proliferation of NB cell lines with wild type ALK (WT) as well as ALK activating mutations (F1174L and D1091N) by blocking the ALK-mediated PI3K/AKT/mTOR pathway and ultimately induced apoptosis and autophagy. In addition, AZD3463 enhanced the cytotoxic effects of doxorubicin on NB cells. AZD3463 also exhibited significant therapeutic efficacy on the growth of the NB tumors with WT and F1174L activating mutation ALK in orthotopic xenograft mouse models. These results indicate that AZD3463 is a promising therapeutic agent in the treatment of NB.


PLOS ONE | 2013

Gemcitabine eliminates double minute chromosomes from human ovarian cancer cells

Lisa Yu; Yan Zhao; Chao Quan; Wei Ji; Jing Zhu; Yun Huang; Rongwei Guan; Donglin Sun; Yan Jin; Xiangning Meng; Chunyu Zhang; Yang Yu; Jing Bai; Wenjing Sun; Songbin Fu

Double minute chromosomes are cytogenetic manifestations of gene amplification frequently seen in cancer cells. Genes amplified on double minute chromosomes include oncogenes and multi-drug resistant genes. These genes encode proteins which contribute to cancer formation, cancer progression, and development of resistance to drugs used in cancer treatment. Elimination of double minute chromosomes, and therefore genes amplified on them, is an effective way to decrease the malignancy of cancer cells. We investigated the effectiveness of a cancer drug, gemcitabine, on the loss of double minute chromosomes from the ovarian cancer cell line UACC-1598. Gemcitabine is able to decrease the number of double minute chromosomes in cells at a 7500X lower concentration than the commonly used cancer drug hydroxyurea. Amplified genes present on the double minute chromosomes are decreased at the DNA level upon gemcitabine treatment. Gemcitabine, even at a low nanomolar concentration, is able to cause DNA damage. The selective incorporation of double minutes chromatin and γ-H2AX signals into micronuclei provides a strong link between DNA damage and the loss of double minute chromosomes from gemcitabine treated cells. Cells treated with gemcitabine also showed decreased cell growth, colony formation, and invasion. Together, our results suggest that gemcitabine is effective in decreasing double minute chromosomes and this affects the biology of ovarian cancer cells.


Journal of Biological Chemistry | 2009

Tumor Necrosis Factor-α Induces RelA Degradation via Ubiquitination at Lysine 195 to Prevent Excessive Nuclear Factor-κB Activation

Yihui Fan; Renfang Mao; Yanling Zhao; Yang Yu; Wenjing Sun; Ping Song; Zhongcheng Shi; Dekai Zhang; Eric Yvon; Hong Zhang; Songbin Fu; Jianhua Yang

Ubiquitination-mediated degradation of the RelA subunit of nuclear factor-κB (NF-κB) is critical for the termination of NF-κB activation. However, the precise mechanism for the ubiquitination of RelA is still not fully understood. Here we report that tumor necrosis factor-α (TNFα) induces RelA polyubiquitination at the lysine 195 residue, and this ubiquitination event is critical for the degradation of RelA and termination of TNFα-mediated NF-κB activation. Overexpression of a RelA mutant with an arginine substitution for the lysine 195 residue dramatically inhibits RelA polyubiquitination and induces a stronger NF-κB activation compared with the wild type. Reconstitution of RelA-deficient mouse embryo fibroblast cells with wild-type RelA or RelA containing a K195R mutation revealed the importance of this site in TNFα-mediated RelA polyubiquitination, degradation, and attenuation of NF-κB activation. Our finding is the first report that substitution of a key RelA lysine residue with arginine inhibits TNFα-induced RelA ubiquitination and enhances TNFα-induced NF-κB activation.


Scientific Reports | 2015

Excess salt exacerbates blood-brain barrier disruption via a p38/MAPK/SGK1-dependent pathway in permanent cerebral ischemia

Tao Zhang; Shaohong Fang; Wan C; Kong Q; Guohong Wang; Song-You Wang; Hongjie Zhang; Hanfa Zou; Baoquan Sun; Wenjing Sun; Yong-Lai Zhang; Mu L; Jiaou Wang; D. Wang; Hulun Li

High salt diet (HSD) is one of the most important risk factors that contribute to many vascular diseases including ischemic stroke. One proposed mechanism underlying the disruption of blood-brain barrier (BBB) mediated by HSD is indirectly through enhancing blood pressure. The direct role of HSD on BBB integrity is unclear. Our purpose is to determine whether and how HSD might be involved in BBB breakdown during ischemia. To test that, we induced model of cerebral ischemia by permanent middle cerebral artery ligation (pMCAL) in either normal diet or HSD fed mice. We observed that HSD significantly enhanced ischemic brain damage which was associated with enhanced BBB disruption, increased leukocytes infiltration and loss of tight junction (TJ) proteins expression without apparently altering blood pressure. Our in vitro experiment also revealed that sodium chloride (NaCl) treatment down-regulated TJ protein expression by endothelial cells and substantially increased BBB permeability during starvation. Inhibition of p38/MAPK/SGK1 pathway eliminated the effect of NaCl on BBB permeability in vitro. In addition, we noticed a positive correlation between urinary sodium levels and ischemic lesion size in stroke patients. Together, our study demonstrates a hypertension-independent role of HSD during ischemia and provides rationale for post cerebral ischemic attack management.

Collaboration


Dive into the Wenjing Sun's collaboration.

Top Co-Authors

Avatar

Yang Yu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Songbin Fu

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Jing Bai

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiangning Meng

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yan Jin

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Jianhua Yang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Chunyu Zhang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Rongwei Guan

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Jingcui Yu

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Xueyuan Jia

Harbin Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge