Wenjing Yin
Shanghai Jiao Tong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wenjing Yin.
Theranostics | 2017
Shi-Cong Tao; Ting Yuan; Yuelei Zhang; Wenjing Yin; Shang-Chun Guo; Changqing Zhang
OBJECTIVES: Osteoarthritis (OA) is the most common joint disease throughout the world. Exosomes derived from miR-140-5p-overexpressing synovial mesenchymal stem cells (SMSC-140s) may be effective in treating OA. We hypothesized that exosomes derived from SMSC-140 (SMSC-140-Exos) would enhance the proliferation and migration abilities of articular chondrocytes (ACs) without harming extracellular matrix (ECM) secretion. METHODS: SMSCs were transfected with or without miR-140-5p. Exosomes derived from SMSCs or SMSC-140s (SMSC-Exos or SMSC-140-Exos) were isolated and identified. Proliferation, migration and ECM secretion were measured in vitro and compared between groups. The mechanism involving alternative Wnt signalling and activation of Yes-associated protein (YAP) was investigated using lentivirus, oligonucleotides or chemical drugs. The preventative effect of exosomes in vivo was measured using Safranin-O and Fast green staining and immunohistochemical staining. RESULTS: Wnt5a and Wnt5b carried by exosomes activated YAP via the alternative Wnt signalling pathway and enhanced proliferation and migration of chondrocytes with the side-effect of significantly decreasing ECM secretion. Highly-expressed miR-140-5p blocked this side-effect via RalA. SMSC-140-Exos enhanced the proliferation and migration of ACs without damaging ECM secretion in vitro, while in vivo, SMSC-140-Exos successfully prevented OA in a rat model. CONCLUSIONS: These findings highlight the promising potential of SMSC-140-Exos in preventing OA. We first found a potential source of exosomes and studied their merits and shortcomings. Based on our understanding of the molecular mechanism, we overcame the shortcomings by modifying the exosomes. Such exosomes derived from modified cells hold potential as future therapeutic strategies.
Materials Science and Engineering: C | 2017
Yong Lei; Zhengliang Xu; Qin-Fei Ke; Wenjing Yin; Yi-Xuan Chen; Changqing Zhang; Ya-Ping Guo
For the clinical application of bone tissue engineering with the combination of biomaterials and mesenchymal stem cells (MSCs), bone scaffolds should possess excellent biocompatibility and osteoinductivity to accelerate the repair of bone defects. Herein, strontium hydroxyapatite [SrHAP, Ca10-xSrx(PO4)6(OH)2]/chitosan (CS) nanohybrid scaffolds were fabricated by a freeze-drying method. The SrHAP nanocrystals with the different x values of 0, 1, 5 and 10 are abbreviated to HAP, Sr1HAP, Sr5HAP and Sr10HAP, respectively. With increasing x values from 0 to 10, the crystal cell volumes and axial lengths of SrHAP become gradually large because of the greater ion radius of Sr2+ than Ca2+, while the crystal sizes of SrHAP decrease from 70.4nm to 46.7nm. The SrHAP/CS nanohybrid scaffolds exhibits three-dimensional (3D) interconnected macropores with pore sizes of 100-400μm, and the SrHAP nanocrystals are uniformly dispersed within the scaffolds. In vitro cell experiments reveal that all the HAP/CS, Sr1HAP/CS, Sr5HAP/CS and Sr10HAP/CS nanohybrid scaffolds possess excellent cytocompatibility with the favorable adhesion, spreading and proliferation of human bone marrow mesenchymal stem cells (hBMSCs). The Sr5HAP nanocrystals in the scaffolds do not affect the adhesion, spreading of hBMSCs, but they contribute remarkably to cell proliferation and osteogenic differentiation. As compared with the HAP/CS nanohybrid scaffold, the released Sr2+ ions from the SrHAP/CS nanohybrid scaffolds enhance alkaline phosphatase (ALP) activity, extracellular matrix (ECM) mineralization and osteogenic-related COL-1 and ALP expression levels. Especially, the Sr5HAP/CS nanohybrid scaffolds exhibit the best osteoinductivity among four groups because of the synergetic effect between Ca2+ and Sr2+ ions. Hence, the Sr5HAP/CS nanohybrid scaffolds with excellent cytocompatibility and osteogenic property have promising application for bone tissue engineering.
Journal of Translational Medicine | 2016
Wenjing Yin; Xin Qi; Yuelei Zhang; Jiagen Sheng; Zhengliang Xu; Shi-Cong Tao; Xuetao Xie; Xiaolin Li; Changqing Zhang
BackgroundHigh levels of pro-inflammatory cytokines in leukocyte- and platelet-rich plasma (L-PRP) may activate the nuclear factor κB (NF-κB) pathway to counter the beneficial effect of the growth factors on bone regeneration. However, to date, no relevant studies have substantiated this.MethodsL-PRP and pure platelet-rich plasma (P-PRP) were isolated. The in vitro effects of L-PRP and P-PRP on the proliferation, viability and migration of human bone marrow-derived mesenchymal stem cells (HBMSCs) and EaHy926, tube formation of EaHy926, and osteogenic differentiation of HBMSCs were assessed by cell counting, flow cytometry, scratch assay, tube formation assay, and real-time quantitative polymerase chain reaction (RT-PCR), western blotting and Alizarin red staining, respectively. The in vitro effects of L-PRP and P-PRP on the nuclear translocation of NF-κB p65, mRNA expression of inducible nitric oxide synthase and cyclooxygenase-2, and production of prostaglandin E2 and nitric oxid were assessed by western blotting, RT-PCR, enzyme-linked immunosorbent assay and Griess reaction, respectively. The in vivo effects of L-PRP or P-PRP preprocessed β-tricalcium phosphate (β-TCP) on the calvarial defects in rats were assessed by histological and immunofluorescence examinations.ResultsP-PRP, which had similar platelet and growth factors concentrations but significantly lower concentrations of leukocytes and pro-inflammatory cytokines compared with L-PRP, promoted the proliferation, viability and migration of HBMSCs and EaHy926, tube formation of EaHy926 and osteogenic differentiation of HBMSCs in vitro, compared with L-PRP. The implantation of P-PRP preprocessed β-TCP also yielded better histological results than the implantation of L-PRP preprocessed β-TCP in vivo. Moreover, L-PRP treatment resulted in the activation of the NF-κB pathway in HBMSCs and EaHy926 in vitro while the postoperative delivery of caffeic acid phenethyl ester, an inhibitor of NF-κB activation, enhanced the histological results of the implantation of L-PRP preprocessed β-TCP in vivo.ConclusionsLeukocytes in L-PRP may activate the NF-κB pathway via the increased pro-inflammatory cytokines to induce the inferior effects on bone regeneration of L-PRP compared with P-PRP. Hence, P-PRP may be more suitable for bone regeneration compared with L-PRP, and the combined use of P-PRP and β-TCP represents a safe, simple, and effective alternative option for autogenous bone graft in the treatment of bone defects.
Theranostics | 2017
Shang-Chun Guo; Shi-Cong Tao; Wenjing Yin; Xin Qi; Ting Yuan; Changqing Zhang
Chronic wounds have become an economic, social, and public health burden and need advanced treatment. Platelet-rich plasma (PRP) has been used extensively in treatment of chronic wounds because it contains an abundance of growth factors secreted by platelets. The exosomes derived from PRP (PRP-Exos) have been proven to encapsulate principal growth factors from platelets. This study is the first to show that these exosomes may exert the function of PRP. PRP-Exos can effectively induce proliferation and migration of endothelial cells and fibroblasts to improve angiogenesis and re-epithelialization in chronic wounds. We regulated YAP to verify the PRP-Exos-dependent effect on fibroblast proliferation and migration through YAP activation. In vivo, we observed the cutaneous healing process in chronic wounds treated with PRP-Exos in a diabetic rat model. We provide evidence of the probable molecular mechanisms underlying the PRP effect on healing of chronic ulcers and describe a promising resource of growth factors from exosomes without species restriction.
Scientific Reports | 2017
Zhengliang Xu; Wenjing Yin; Yuelei Zhang; Xin Qi; Yi-Xuan Chen; Xuetao Xie; Changqing Zhang
Platelet-rich plasma (PRP) has gained growing popularity in the treatment of articular cartilage lesions in the last decade. However, the potential harmful effects of leukocytes in PRP on cartilage regeneration have seldom been studied in vitro, and not at all in vivo yet. The objective of the present study is to compare the effects of leukocyte- and platelet-rich plasma (L-PRP) and pure platelet-rich plasma (P-PRP) on cartilage repair and NF-κB pathway, in order to explore the mechanism underlying the function of leukocytes in PRP in cartilage regeneration. The constituent analysis showed that P-PRP had significantly lower concentrations of leukocytes and pro-inflammatory cytokines compared with L-PRP. In addition, cell proliferation and differentiation assays indicated P-PRP promoted growth and chondrogenesis of rabbit bone marrow mesenchymal stem cells (rBMSC) significantly compared with L-PRP. Despite similarity in macroscopic appearance, the implantation of P-PRP combining rBMSC in vivo yielded better cartilage repair results than the L-PRP group based on histological examination. Importantly, the therapeutic effects of PRP on cartilage regeneration could be enhanced by removing leukocytes to avoid the activation of the NF-κB pathway. Thus, PRP without concentrated leukocytes may be more suitable for the treatment of articular cartilage lesions.
Journal of Materials Chemistry B | 2016
Zhengliang Xu; Yong Lei; Wenjing Yin; Yi-Xuan Chen; Qin-Fei Ke; Ya-Ping Guo; Changqing Zhang
The properties of bone scaffolds, including biocompatibility, osteoinductivity and antibacterial activity, are of great importance for reconstruction of large bone defects and prevention of implant-associated infections. Herein, we develop an Ag-loaded strontium hydroxyapatite (SrHAP)/chitosan (CS) porous scaffold (Ag-SrHAP/CS) according to the following steps: (i) freeze-drying fabrication of a SrHAP/CS porous scaffold; and (ii) deposition of Ag nanoparticles on the above scaffold. In addition, HAP/CS and Ag-HAP/CS porous scaffolds are prepared under the same conditions without doping Sr element. All the HAP/CS, Ag-HAP/CS, SrHAP/CS and Ag-SrHAP/CS porous scaffolds provide a friendly environment for the adhesion, spreading and proliferation of human bone marrow mesenchymal stem cells (hBMSCs). The three-dimensional (3D) interconnected macropores with a pore size of 100-400 μm allow the spreading of hBMSCs throughout the whole scaffolds. Interestingly, the Sr ions and Ag ions released from the Ag-SrHAP/CS porous scaffolds significantly enhance their osteoinductivity and antibacterial activity, respectively. The Sr element in the SrHAP/CS and Ag-SrHAP/CS porous scaffolds increase the alkaline phosphatase (ALP) activity of hBMSCs, extracellular matrix (ECM) mineralization, and the expression levels of osteogenic-related genes BMP-2 and COL-I. Moreover, the Ag ions released from the Ag-HAP/CS and Ag-SrHAP/CS scaffolds can effectively inhibit the growth and attachment of Staphylococcus aureus (S. aureus, ATCC 25923). In conclusion, the Ag-SrHAP/CS porous scaffold possesses excellent biocompatibility, osteoinductivity and antibacterial activity, so it has great potential for application in bone tissue engineering to repair bone defects and avoid infections.
Medical Science Monitor | 2016
Wenjing Yin; Hai-Tao Xu; Jiagen Sheng; Zhiquan An; Shangchun Guo; Xuetao Xie; Changqing Zhang
Background Concentrated leukocytes in leukocyte- and platelet-rich plasma (L-PRP) may deliver increased levels of pro-inflammatory cytokines to activate the NF-κB signaling pathway, to counter the beneficial effects of growth factors on osteoarthritic cartilage. However, to date no relevant studies have substantiated that in vivo. Material/Methods Autologous L-PRP and pure platelet-rich plasma (P-PRP) were prepared, measured for componential composition, and injected intra-articularly after 4, 5, and 6 weeks post-anterior cruciate ligament transection. Caffeic acid phenethyl ester (CAPE) was injected intraperitoneally to inhibit NF-κB activation. All rabbits were sacrificed after 8 weeks postoperative. Enzyme-linked immunosorbent assays were performed to determine interleukin 1β (IL-1β) and prostaglandin E2 (PGE2) concentrations in the synovial fluid, Indian ink staining was performed for gross morphological assessment, and hematoxylin and eosin staining and toluidine blue staining were performed for histological assessment. Results Compared with L-PRP, P-PRP injections achieved better outcomes regarding the prevention of cartilage destruction, preservation of cartilaginous matrix, and reduction of IL-1β and PGE2 concentrations. CAPE injections reversed the increased IL-1β and PGE2 concentrations in the synovial fluid after L-PRP injections and improved the outcome of L-PRP injections to a level similar to P-PRP injections, while they had no influence on the therapeutic efficacy of P-PRP injections. Conclusions Concentrated leukocytes in L-PRP may release increased levels of pro-inflammatory cytokines to activate the NF-κB signaling pathway, to counter the beneficial effects of growth factors on osteoarthritic cartilage, and finally, result in a inferior efficacy of L-PRP to P-PRP for the treatment of osteoarthritis.
International Journal of Biological Sciences | 2016
Shang-Chun Guo; Shi-Cong Tao; Wenjing Yin; Xin Qi; Jiagen Sheng; Changqing Zhang
Osteonecrosis of the femoral head (ONFH) represents a debilitating complication following glucocorticoid (GC)-based therapy. Synovial-derived mesenchymal stem cells (SMSCs) can exert protective effect in the animal model of GC-induced ONFH by inducing cell proliferation and preventing cell apoptosis. Recent studies indicate the transplanted cells exert therapeutic effects primarily via a paracrine mechanism and exosomes are an important paracrine factor that can be directly used as therapeutic agents for tissue engineering. Herein, we provided the first demonstration that the early treatment of exosomes secreted by human synovial-derived mesenchymal stem cells (SMSC-Exos) could prevent GC-induced ONFH in the rat model. Using a series of in vitro functional assays, we found that SMSC-Exos could be internalized into bone marrow derived stromal cells (BMSCs) and enhance their proliferation and have anti-apoptotic abilities. Finally, SMSC-Exos may be promising for preventing GC-induced ONFH.
International Journal of Biological Sciences | 2016
Hongyi Zhu; Shang-Chun Guo; Yuelei Zhang; Jun-Hui Yin; Wenjing Yin; Shi-Cong Tao; Yang Wang; Changqing Zhang
The pHs of extracellular fluids (ECFs) in normal tissues are commonly maintained at 7.35 to 7.45. The acidification of the ECF is one of the major characteristics of tumour microenvironment. In this study, we report that decreased extracellular pH promotes the transformation of mesenchymal stem cells (MSCs) into cancer-associated fibroblasts (CAFs), termed CAF activation. Furthermore, we demonstrate that GPR68, a proton-sensing G-protein-coupled receptor (GPCR), is required for the pH-dependent regulation of the differentiation of MSCs into CAFs. We then identify Yes-associated protein 1 (YAP) as a downstream effector of GPR68 for CAF activation. Finally, we show that knockdown of GPR68 in MSCs can prevent the CAF activation under cancer microenvironment. Systemic transplantation of GPR68-silenced MSCs suppresses in-situ tumour growth and prolong life span after cancer graft.
Oncotarget | 2017
Yi-Xuan Chen; Shi-Cong Tao; Zheng-Liang Xu; Wenjing Yin; Yuelei Zhang; Jun-Hui Yin; You-Shui Gao; Changqing Zhang
Alcohol is a leading risk factor for osteonecrosis of the femoral head (ONFH). We explored the molecular mechanisms underlying alcohol-induced ONFH and investigated the protective effect of the novel Akt activator SC-79 against this disease. We found that ethanol inhibited expression of the osteogenic genes RUNX2 and OCN, downregulated osteogenic differentiation, impaired the recruitment of Akt to the plasma membrane, and suppressed Akt phosphorylation at Ser473, thereby inhibiting the Akt/GSK3β/β-catenin signaling pathway in bone mesenchymal stem cells. To assess SC-79′s ability to counteract the inhibitory effect of ethanol on Akt-Ser73 phosphorylation, we performed micro-computerized tomography and immunofluorescent staining of osteopontin, osteocalcin and collagen type 1 in a rat model of alcohol-induced ONFH. We found that SC-79 injections inhibited alcohol-induced osteonecrosis. These results show that alcohol-induced ONFH is associated with suppression of p-Akt-Ser473 in the Akt/GSK3β/β-catenin signaling pathway in bone mesenchymal stem cells. We propose that SC-79 treatment to rescue Akt activation could be tested in the clinic as a potential therapeutic approach to preventing the development of alcohol-induced ONFH.