Wenju Cai
Ocean University of China
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wenju Cai.
Nature Climate Change | 2012
Lixin Wu; Wenju Cai; Liping Zhang; Hisashi Nakamura; Axel Timmermann; Terrence M. Joyce; Michael J. McPhaden; Michael A. Alexander; Bo Qiu; Martin Visbeck; Ping Chang; Benjamin S. Giese
Subtropical western boundary currents are warm, fast-flowing currents that form on the western side of ocean basins. They carry warm tropical water to the mid-latitudes and vent large amounts of heat and moisture to the atmosphere along their paths, affecting atmospheric jet streams and mid-latitude storms, as well as ocean carbon uptake1, 2, 3, 4. The possibility that these highly energetic currents might change under greenhouse-gas forcing has raised significant concerns5, 6, 7, but detecting such changes is challenging owing to limited observations. Here, using reconstructed sea surface temperature datasets and century-long ocean and atmosphere reanalysis products, we find that the post-1900 surface ocean warming rate over the path of these currents is two to three times faster than the global mean surface ocean warming rate. The accelerated warming is associated with a synchronous poleward shift and/or intensification of global subtropical western boundary currents in conjunction with a systematic change in winds over both hemispheres. This enhanced warming may reduce the ability of the oceans to absorb anthropogenic carbon dioxide over these regions. However, uncertainties in detection and attribution of these warming trends remain, pointing to a need for a long-term monitoring network of the global western boundary currents and their extensions.
Journal of Climate | 2011
Wenju Cai; Peter van Rensch; Tim Cowan; Harry H. Hendon
AbstractImpacts of El Nino–Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) on Australian rainfall are diagnosed from the perspective of tropical and extratropical teleconnections triggered by tropical sea surface temperature (SST) variations. The tropical teleconnection is understood as the equatorially trapped, deep baroclinic response to the diabatic (convective) heating anomalies induced by the tropical SST anomalies. These diabatic heating anomalies also excite equivalent barotropic Rossby wave trains that propagate into the extratropics. The main direct tropical teleconnection during ENSO is the Southern Oscillation (SO), whose impact on Australian rainfall is argued to be mainly confined to near-tropical portions of eastern Australia. Rainfall is suppressed during El Nino because near-tropical eastern Australia directly experiences subsidence and higher surface pressure associated with the western pole of the SO. Impacts on extratropical Australian rainfall during El Nino are argued to...
Journal of Climate | 2003
Wenju Cai; Peter H. Whetton; David J. Karoly
Abstract Recent results from greenhouse warming experiments, most of which follow the Intergovernmental Panel on Climate Change (IPCC) IS92a scenario, have shown that under increasing atmospheric CO2 concentration, the Antarctic Oscillation (AAO) exhibits a positive trend. However, its response during the subsequent CO2 stabilization period has not been explored. In this study, it is shown that the upward trend of the AAO reverses during such a stabilization period. This evolution of an upward trend and a subsequent reversal is present in each ensemble of three greenhouse simulations using three versions of the CSIRO Mark 2 coupled climate model. The evolution is shown to be linked with that of surface temperature, which also displays a corresponding trend and reversal, incorporating the well-known feature of interhemispheric warming asymmetry with smaller warming in the Southern Hemisphere (smaller as latitude increases) than that in the Northern Hemisphere during the transient period, and vice versa dur...
Nature | 2015
Dunxin Hu; Lixin Wu; Wenju Cai; Alex Sen Gupta; Alexandre Ganachaud; Bo Qiu; Arnold L. Gordon; Xiaopei Lin; Zhaohui Chen; Shijian Hu; Guojian Wang; Qingye Wang; Janet Sprintall; Tangdong Qu; Yuji Kashino; Fan Wang; William S. Kessler
Pacific Ocean western boundary currents and the interlinked equatorial Pacific circulation system were among the first currents of these types to be explored by pioneering oceanographers. The widely accepted but poorly quantified importance of these currents—in processes such as the El Niño/Southern Oscillation, the Pacific Decadal Oscillation and the Indonesian Throughflow—has triggered renewed interest. Ongoing efforts are seeking to understand the heat and mass balances of the equatorial Pacific, and possible changes associated with greenhouse-gas-induced climate change. Only a concerted international effort will close the observational, theoretical and technical gaps currently limiting a robust answer to these elusive questions.
Nature | 2012
Wenju Cai; Matthieu Lengaigne; Simon Borlace; Matthew D. Collins; Tim Cowan; Michael J. McPhaden; Axel Timmermann; Scott B. Power; Josephine R. Brown; Christophe Menkes; Arona Ngari; Emmanuel Vincent; Matthew J. Widlansky
The South Pacific convergence zone (SPCZ) is the Southern Hemisphere’s most expansive and persistent rain band, extending from the equatorial western Pacific Ocean southeastward towards French Polynesia. Owing to its strong rainfall gradient, a small displacement in the position of the SPCZ causes drastic changes to hydroclimatic conditions and the frequency of extreme weather events—such as droughts, floods and tropical cyclones—experienced by vulnerable island countries in the region. The SPCZ position varies from its climatological mean location with the El Niño/Southern Oscillation (ENSO), moving a few degrees northward during moderate El Niño events and southward during La Niña events. During strong El Niño events, however, the SPCZ undergoes an extreme swing—by up to ten degrees of latitude toward the Equator—and collapses to a more zonally oriented structure with commensurately severe weather impacts. Understanding changes in the characteristics of the SPCZ in a changing climate is therefore of broad scientific and socioeconomic interest. Here we present climate modelling evidence for a near doubling in the occurrences of zonal SPCZ events between the periods 1891–1990 and 1991–2090 in response to greenhouse warming, even in the absence of a consensus on how ENSO will change. We estimate the increase in zonal SPCZ events from an aggregation of the climate models in the Coupled Model Intercomparison Project phases 3 and 5 (CMIP3 and CMIP5) multi-model database that are able to simulate such events. The change is caused by a projected enhanced equatorial warming in the Pacific and may lead to more frequent occurrences of extreme events across the Pacific island nations most affected by zonal SPCZ events.
Journal of Climate | 2007
Wenju Cai; Tim Cowan
Abstract Simulations by the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models on the Southern Hemisphere (SH) circulation are assessed over the period 1950–99, focusing on the seasonality of the trend and the level of its congruency with the southern annular mode (SAM) in terms of surface zonal wind stress. It is found that, as a group, the models realistically produce the seasonality of the trend, which is strongest in the SH summer season, December–February (DJF). The modeled DJF trend is principally congruent with the modeled SAM trend, as in observations. The majority of models produce a statistically significant positive trend, with decreasing westerlies in the midlatitudes and increasing westerlies in the high latitudes. The trend pattern from an all-experiment mean achieves highest correlation with that from the National Centers for Environmental Prediction (NCEP) data. A total of 48 out of the 71 experiments were run with ozone-depletion forcing, which offers a...
Journal of Climate | 2010
Wenju Cai; Peter van Rensch; Tim Cowan; Arnold Sullivan
Abstract An asymmetry, and its multidecadal variability, in a rainfall teleconnection with the El Nino–Southern Oscillation (ENSO) are described. Further, the breakdown of this relationship since 1980 is offered as a cause for a rainfall reduction in an ENSO-affected region, southeast Queensland (SEQ). There, austral summer rainfall has been declining since around the 1980s, but the associated process is not understood. It is demonstrated that the rainfall reduction is not simulated by the majority of current climate models forced with anthropogenic forcing factors. Examination shows that ENSO is a rainfall-generating mechanism for the region because of an asymmetry in its impact: the La Nina–rainfall relationship is statistically significant, as SEQ summer rainfall increases with La Nina amplitude; by contrast, the El Nino–induced rainfall reductions do not have a statistically significant relationship with El Nino amplitude. Since 1980, this asymmetry no longer operates, and La Nina events no longer ind...
Nature | 2014
Wenju Cai; Agus Santoso; Guojian Wang; Evan Weller; Lixin Wu; Karumuri Ashok; Yukio Masumoto; Toshio Yamagata
The Indian Ocean dipole is a prominent mode of coupled ocean–atmosphere variability, affecting the lives of millions of people in Indian Ocean rim countries. In its positive phase, sea surface temperatures are lower than normal off the Sumatra–Java coast, but higher in the western tropical Indian Ocean. During the extreme positive-IOD (pIOD) events of 1961, 1994 and 1997, the eastern cooling strengthened and extended westward along the equatorial Indian Ocean through strong reversal of both the mean westerly winds and the associated eastward-flowing upper ocean currents. This created anomalously dry conditions from the eastern to the central Indian Ocean along the Equator and atmospheric convergence farther west, leading to catastrophic floods in eastern tropical African countries but devastating droughts in eastern Indian Ocean rim countries. Despite these serious consequences, the response of pIOD events to greenhouse warming is unknown. Here, using an ensemble of climate models forced by a scenario of high greenhouse gas emissions (Representative Concentration Pathway 8.5), we project that the frequency of extreme pIOD events will increase by almost a factor of three, from one event every 17.3 years over the twentieth century to one event every 6.3 years over the twenty-first century. We find that a mean state change—with weakening of both equatorial westerly winds and eastward oceanic currents in association with a faster warming in the western than the eastern equatorial Indian Ocean—facilitates more frequent occurrences of wind and oceanic current reversal. This leads to more frequent extreme pIOD events, suggesting an increasing frequency of extreme climate and weather events in regions affected by the pIOD.
Nature | 2013
Agus Santoso; Shayne McGregor; Fei-Fei Jin; Wenju Cai; Matthew H. England; Soon Il An; Michael J. McPhaden; Eric Guilyardi
The El Niño/Southern Oscillation (ENSO) is the Earth’s most prominent source of interannual climate variability, exerting profound worldwide effects. Despite decades of research, its behaviour continues to challenge scientists. In the eastern equatorial Pacific Ocean, the anomalously cool sea surface temperatures (SSTs) found during La Niña events and the warm waters of modest El Niño events both propagate westwards, as in the seasonal cycle. In contrast, SST anomalies propagate eastwards during extreme El Niño events, prominently in the post-1976 period, spurring unusual weather events worldwide with costly consequences. The cause of this propagation asymmetry is currently unknown. Here we trace the cause of the asymmetry to the variations in upper ocean currents in the equatorial Pacific, whereby the westward-flowing currents are enhanced during La Niña events but reversed during extreme El Niño events. Our results highlight that propagation asymmetry is favoured when the westward mean equatorial currents weaken, as is projected to be the case under global warming. By analysing past and future climate simulations of an ensemble of models with more realistic propagation, we find a doubling in the occurrences of El Niño events that feature prominent eastward propagation characteristics in a warmer world. Our analysis thus suggests that more frequent emergence of propagation asymmetry will be an indication of the Earth’s warming climate.
Journal of Climate | 2005
Wenju Cai; Harry H. Hendon; Gary Meyers
Abstract Coupled ocean–atmosphere variability in the tropical Indian Ocean is explored with a multicentury integration of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Mark 3 climate model, which runs without flux adjustment. Despite the presence of some common deficiencies in this type of coupled model, zonal dipolelike variability is produced. During July through November, the dominant mode of variability of sea surface temperature resembles the observed zonal dipole and has out-of-phase rainfall variations across the Indian Ocean basin, which are as large as those associated with the model El Nino–Southern Oscillation (ENSO). In the positive dipole phase, cold SST anomaly and suppressed rainfall south of the equator on the Sumatra–Java coast drives an anticyclonic circulation anomaly that is consistent with the steady response (Gill model) to a heat sink displaced south of the equator. The northwest–southeast tilting Sumatra–Java coast results in cold sea surface temperature ...
Collaboration
Dive into the Wenju Cai's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs