Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenlan Liu is active.

Publication


Featured researches published by Wenlan Liu.


Journal of Neurochemistry | 2015

Caveolin-1 mediates tissue plasminogen activator-induced MMP-9 up-regulation in cultured brain microvascular endothelial cells

Xinchun Jin; Yanyun Sun; Ji Xu; Wenlan Liu

Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase‐9 (MMP‐9) activity in the ischemic brain, which exacerbates blood‐brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP‐9 activity is not well understood. Here we report an important role of caveolin‐1 in mediating tPA‐induced MMP‐9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP‐9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP‐9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3‐fold increase of caveolin‐1 protein levels in endothelial cells. Interestingly, knockdown of Cav‐1 with siRNA inhibited tPA‐induced MMP‐9 mRNA up‐regulation and MMP‐9 increase in the conditioned media, but did not affect MMP‐9 decrease in cellular extracts. These results suggest that caveolin‐1 critically contributes to tPA‐mediated MMP‐9 up‐regulation, but may not facilitate MMP‐9 secretion in endothelial cells. Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase‐9 (MMP‐9) activity in the ischemic brain, which exacerbates ischemic blood brain barrier (BBB) injury and increases the risk of symptomatic cerebral hemorrhage. Our results suggest a novel mechanism underlying this tPA‐MMP 9 axis. In response to tPA treatment, caveolin‐1 protein levels increased in endothelial cells, which mediate MMP‐9 mRNA up‐regulation and its secretion into extracellular space. Caveolin‐1 may, however, not facilitate MMP‐9 secretion in endothelial cells. Our data suggest caveolin‐1 as a novel therapeutic target for protecting the BBB against ischemic damage. The schematic outlines tPA‐induced MMP‐9 upreguation.


Aging Cell | 2017

Melatonin alleviates lipopolysaccharide‐compromised integrity of blood–brain barrier through activating AMP‐activated protein kinase in old mice

Xiaona Wang; Gai-Xiu Xue; Wen-Cao Liu; Hui Shu; Mengwei Wang; Yanyun Sun; Xiaojing Liu; Yi Eve Sun; Chun-Feng Liu; Jie Liu; Wenlan Liu; Xinchun Jin

Blood–brain barrier (BBB) dysfunction is considered to be an early event in the pathogenesis of a variety of neurological diseases in old patients, and this could occur in old people even when facing common stress. However, the mechanism remains to be defined. In this study, we tested the hypothesis that decreased melatonin levels may account for the BBB disruption in old mice challenged with lipopolysaccharide (LPS), which mimicked the common stress of sepsis. Mice (24–28 months of age) received melatonin (10 mg kg−1 day−1, intraperitoneally, i.p.) or saline for one week before exposing to LPS (1 mg kg−1, i.p.). Evans blue dye (EB) and immunoglobulin G (IgG) leakage were used to assess BBB permeability. Immunostaining and Western blot were used to detect protein expression and distribution. Our results showed that LPS significantly increased BBB permeability in old mice accompanied by the degradation of tight junction proteins occludin and claudin‐5, suppressed AMP‐activated protein kinase (AMPK) activation, and elevated gp91phox protein expression. Interestingly, administration of melatonin for one week significantly decreased LPS‐induced BBB disruption, AMPK suppression, and gp91phox upregualtion. Moreover, activation of AMPK with metformin significantly inhibited LPS‐induced gp91phox upregualtion in endothelial cells. Taken together, our findings demonstrate that melatonin alleviates LPS‐induced BBB disruption through activating AMPK and inhibiting gp91phox upregulation in old mice.


Scientific Reports | 2017

Blood Occludin Level as a Potential Biomarker for Early Blood Brain Barrier Damage Following Ischemic Stroke.

Rong Pan; Theodore Weatherwax; Handong Zheng; Wenlan Liu; Ke Jian Liu

Concern about intracerebral hemorrhage (ICH) is the primary reason for withholding tPA therapy from patients with ischemic stroke. Early blood brain barrier (BBB) damage is the major risk factor for fatal post-thrombolysis ICH, but rapidly assessing BBB damage before tPA administration is highly challenging. We recently reported that ischemia induced rapid degradation of tight junction protein occludin in cerebromicrovessels. The present study investigates whether the cleaved occludin is released into the blood stream and how blood occludin levels correlate to the extent of BBB damage using a rat model of ischemic stroke. Cerebral ischemia induced a time-dependent increase of blood occludin with a sharp increase at 4.5-hour post-ischemia onset, which concurrently occurred with the loss of occludin from ischemic cerebral microvessels and a massive BBB leakage at 4.5-hour post-ischemia. Two major occludin fragments were identified in the blood during cerebral ischemia. Furthermore, blood occludin levels remained significantly higher than its basal level within the first 24 hours after ischemia onset. Our findings demonstrate that blood occludin levels correlate well with the extent of BBB damage and thus may serve as a clinically relevant biomarker for evaluating the risk of ICH before tPA administration.


Frontiers in Molecular Neuroscience | 2016

Cerebral Microvascular Endothelial Cell Apoptosis after Ischemia: Role of Enolase-Phosphatase 1 Activation and Aci-Reductone Dioxygenase 1 Translocation

Yuan Zhang; Ting Wang; Ke Yang; Ji Xu; Lijie Ren; Weiping Li; Wenlan Liu

Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic hemispheric microvessels in rats. Exposure of cultured brain microvascular endothelial cells (bEND3 cells) to oxygen-glucose deprivation (OGD) also induced ENOPH1 upregulation, which was accompanied by increased cell death and apoptosis reflected by increased 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide formation, lactate dehydrogenase release and TUNEL staining. Knockdown of ENOPH1 expression with siRNA or overexpressing ENOPH1 with CRISPR-activated plasmids attenuated or potentiated OGD-induced endothelial cell death, respectively. Moreover, ENOPH1 knockdown or overexpression resulted in a significant reduction or augmentation of reactive oxygen species (ROS) generation, apoptosis-associated proteins (caspase-3, PARP, Bcl-2 and Bax) and Endoplasmic reticulum (ER) stress proteins (Ire-1, Calnexin, GRP78 and PERK) in OGD-treated endothelial cells. OGD upregulated the expression of ENOPH1’s downstream protein aci-reductone dioxygenase 1 (ADI1) and enhanced its interaction with ENOPH1. Interestingly, knockdown of ENOPH1 had no effect on OGD-induced ADI1 upregulation, while it potentiated OGD-induced ADI1 translocation from the nucleus to the cytoplasm. Lastly, knockdown of ENOPH1 significantly reduced OGD-induced endothelial monolayer permeability increase. In conclusion, our data demonstrate that ENOPH1 activation may contribute to OGD-induced endothelial cell death and BBB disruption through promoting ROS generation and the activation of apoptosis associated proteins, thus representing a new therapeutic target for ischemic stroke.


Journal of Neurochemistry | 2015

Activation of matrix metalloproteinase in dorsal hippocampus drives improvement in spatial working memory after intra-VTA nicotine infusion in rats.

Hui Shu; Guo-qing Zheng; Xiaona Wang; Yanyun Sun; Yushan Liu; John Weaver; Xianzhi Shen; Wenlan Liu; Xinchun Jin

The hippocampus receives dopaminergic projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences hippocampus‐dependent behaviors. Enhancements in working memory performance have been previously reported following acute smoking/nicotine exposure. However, the underlying mechanism remains unclear. This study investigated the effects of nicotine on spatial working memory (SWM) and the mechanisms involved. Delayed alternation T‐maze task was used to assess SWM. In situ and gel gelatin zymography were used to detect matrix metalloproteinase‐9 (MMP‐9) in SWM. Systemic or local (intra‐VTA) administration of nicotine significantly improves SWM, which was accompanied by increased MMP‐9 activity in dorsal hippocampus (dHPC). Intra‐dHPC administration of MMP inhibitor FN‐439 abolished the memory enhancement induced by intra‐VTA nicotine infusion. FN‐439 had no effect on locomotor behavior. Our data suggest that intra‐VTA nicotine infusion activates MMP‐9 in dHPC to improve SWM in rats.


Frontiers in Molecular Neuroscience | 2017

β2-Adrenergic Receptor-Mediated HIF-1α Upregulation Mediates Blood Brain Barrier Damage in Acute Cerebral Ischemia

Yanyun Sun; Xi Chen; Xinyu Zhang; Xianzhi Shen; Mengwei Wang; Xiaona Wang; Wen-Cao Liu; Chun-Feng Liu; Jie Liu; Wenlan Liu; Xinchun Jin

Disruption of the blood brain barrier (BBB) within the thrombolytic time window is an antecedent event to intracerebral hemorrhage in ischemic stroke. Our recent studies showed that 2-h cerebral ischemia induced BBB damage in non-infarcted area and secreted matrix metalloproteinase-2 (MMP-2) accounted for this disruption. However, the factors that affect MMP-2 secretion and regulate BBB damage remains unknown. Since hypoxia-inducible factor-1 alpha (HIF-1α) was discovered as a mater regulator in hypoxia, we sought to investigate the roles of HIF-1α in BBB damage as well as the factors regulating HIF-1α expression in the ischemic brain. in vivo rat middle cerebral artery occlusion (MCAO) and in vitro oxygen glucose deprivation (OGD) models were used to mimic ischemia. Pretreatment with HIF-1α inhibitor YC-1 significantly inhibited 2-h MCAO-induced BBB damage, which was accompanied by suppressed occludin degradation and vascular endothelial growth factor (VEGF) mRNA upregulation. Interestingly, β2-adrenergic receptor (β2-AR) antagonist ICI 118551 attenuated ischemia-induced BBB damage by regulating HIF-1α expression. Double immunostaining showed that HIF-1α was upregulated in ischemic neurons but not in astrocytes andendothelial cells. Of note, HIF-1α inhibition with inhibitor YC-1 or siRNA significantly prevented OGD-induced VEGF upregulation as well as the secretion of VEGF and MMP-2 in neurons. More importantly, blocking β2-AR with ICI 118551 suppressedHIF-1α upregulation in ischemic neurons and attenuated occludin degradation induced by the conditioned media of OGD-treatedneurons. Taken together, blockade of β2-AR-mediated HIF-1α upregulation mediates BBB damage during acute cerebral ischemia. These findings provide new mechanistic understanding of early BBB damage in ischemic stroke and may help reduce thrombolysis-related hemorrhagic complications.


Neurological Research | 2016

Normobaric hyperoxia retards the evolution of ischemic brain tissue toward infarction in a rat model of transient focal cerebral ischemia

Ji Xu; Yuan Zhang; Zhouyuan Liang; Ting Wang; Weiping Li; Lijie Ren; Shaonong Huang; Wenlan Liu

Objectives: Oxygen therapy has been long considered a logical therapy for ischemic stroke. Our previous studies showed that normobaric hyperoxia (normobaric hyperoxia (NBO), 95% O2 with 5% CO2) treatment during ischemia reduced ischemic neuronal death and cerebromicrovascular injury in animal stroke models. In this study, we studied the effects of NBO on the evolution of ischemic brain tissue to infarction in a rat model of transient focal cerebral ischemia. Methods: Male Sprague-Dawley rats were given NBO (95% O2) or normoxia (21% O2) during 90-min filament occlusion of the middle cerebral artery (MCAO), followed by 3 or 22.5 h of reperfusion. 2,3,5-triphenyltetrazolium chloride (TTC) staining was used to evaluate the longitudinal evolution of tissue infarction. Results: In normoxic rats, MCA-supplied cortical and striatal tissue was infarcted after 90-min MCAO with 22.5 h of reperfusion. NBO-treated rats showed a 61.4% reduction in infarct size and tissue infarction mainly occurred in the ischemic striatum. When infarction was assessed at an earlier time point, i.e. at 3 h of reperfusion, normoxic rats showed significantly smaller but mature infarction (no TTC staining, white color), with the infarction mainly occurring in the striatum. Unexpectedly, NBO-treated rats only showed immature lesion (partially stained by TTC, light white color) in the ischemic striatum, indicating that NBO treatment also retarded the process of neuronal death in the ischemic core. Of note, NBO-preserved striatal tissue underwent infarction after prolonged reperfusion. Conclusions: Our results demonstrate that NBO treatment given during cerebral ischemia retards the evolution of ischemic brain tissue toward infarction and NBO-preserved cortical tissue survives better than NBO-preserved striatal tissue during the phase of reperfusion.


Neural Regeneration Research | 2016

NADPH oxidase 2 does not contribute to early reperfusion-associated reactive oxygen species generation following transient focal cerebral ischemia.

Yuan Zhang; Ting Wang; Ke Yang; Ji Xu; Jian-ming Wu; Wenlan Liu

Excess production of reactive oxygen species (ROS) critically contributes to occurrence of reperfusion injury, the paradoxical response of ischemic brain tissue to restoration of cerebral blood flow. However, the enzymatic sources of ROS generation remain to be unclear. This study examined Nox2-containing NADPH oxidase (Nox2) expression and its activity in ischemic brain tissue following post-ischemic reperfusion to clarify the mechanism of enzymatic reaction of ROS. Male Sprague-Dawley rats were subjected to 90-minute middle cerebral artery occlusion, followed by 3 or 22.5 hours of reperfusion. Quantitative reverse transcriptase PCR and western blot assay were performed to measure mRNA and protein expression of Nox2. Lucigenin fluorescence assays were performed to assess Nox activity. Our data showed that Nox2 mRNA and protein expression levels were significantly increased (3.7-fold for mRNA and 3.6-fold for protein) in ischemic brain tissue at 22.5 hours but not at 3 hours following post-ischemic reperfusion. Similar results were obtained for the changes of NADPH oxidase activity in ischemic cerebral tissue at the two reperfusion time points. Our results suggest that Nox2 may not contribute to the early burst of reperfusion-related ROS generation, but is rather an important source of ROS generation during prolonged reperfusion.


Frontiers in Neurology | 2017

Borneol Attenuates Ultrasound-Targeted Microbubble Destruction-Induced Blood–Brain Barrier Opening in Focal Cerebral Ischemia

Xiao-guang Zhang; Ye Song; Chang Shan; Xi-fan Wu; Yan-hua Tong; Xinchun Jin; Wenlan Liu; Guo-qing Zheng; Jie Liu

Ultrasound-targeted microbubble destruction (UTMD) and the herb medicine borneol can both facilitate the delivery of therapeutic agents to diseased brain regions and serve as promising adjuvant neuroprotective therapies. Our preliminary experiments showed that UTMD could exacerbate ischemic blood–brain barrier (BBB) opening, while borneol can protect the BBB. In this study, we tested the hypothesis that the combination of UTMD and borneol could attenuate UTMD-induced injury to the BBB under ischemic stroke conditions. Male albino mice were subjected to 60-min middle cerebral artery occlusion (MCAO) with reperfusion. Borneol and UTMD was given to mice 3 days before and 24 h after MCAO induction. BBB permeability, brain water contents, ultrastructural changes of the BBB and histopathological alterations were evaluated. Our data demonstrated that UTMD aggravated the leakage of Evans blue dye, ultrastructural alterations of cerebral microvasculature, brain edema, and even induced cerebral hemorrhage in ischemic stroke mice. Pretreatment with borneol significantly attenuated the above detrimental effects of UTMD on the BBB. This study indicates that under ischemic stroke conditions, the BBB becomes vulnerable to UTMD intervention, and the combination of borneol can help to maintain the integrity of the BBB.


Frontiers in Cellular Neuroscience | 2017

Nrdp1 Increases Ischemia Induced Primary Rat Cerebral Cortical Neurons and Pheochromocytoma Cells Apoptosis Via Downregulation of HIF-1α Protein

Yuan Zhang; Ke Yang; Ting Wang; Weiping Li; Xinchun Jin; Wenlan Liu

Neuregulin receptor degradation protein-1 (Nrdp1) is an E3 ubiquitin ligase that targets proteins for degradation and regulates cell growth, apoptosis and oxidative stress in various cell types. We have previously shown that Nrdp1 is implicated in ischemic cardiomyocyte death. In this study, we investigated the change of Nrdp1 expression in ischemic neurons and its role in ischemic neuronal injury. Primary rat cerebral cortical neurons and pheochromocytoma (PC12) cells were infected with adenoviral constructs expressing Nrdp1 gene or its siRNA before exposing to oxygen-glucose deprivation (OGD) treatment. Our data showed that Nrdp1 was upregulated in ischemic brain tissue 3 h after middle cerebral artery occlusion (MCAO) and in OGD-treated neurons. Of note, Nrdp1 overexpression by Ad-Nrdp1 enhanced OGD-induced neuron apoptosis, while knockdown of Nrdp1 with siRNA attenuated this effect, implicating a role of Nrdp1 in ischemic neuron injury. Moreover, Nrdp1 upregulation is accompanied by increased protein ubiquitylation and decreased protein levels of ubiquitin-specific protease 8 (USP8) in OGD-treated neurons, which led to a suppressed interaction between USP8 and HIF-1α and subsequently a reduction in HIF-1α protein accumulation in neurons under OGD conditions. In conclusion, our data support an important role of Nrdp1 upregulation in ischemic neuronal death, and suppressing the interaction between USP8 and HIF-1α and consequently the hypoxic adaptive response of neurons may account for this detrimental effect.

Collaboration


Dive into the Wenlan Liu's collaboration.

Top Co-Authors

Avatar

Ting Wang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Yuan Zhang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Ji Xu

Shenzhen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ke Yang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Ke Jian Liu

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Rong Pan

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge