Wenliang Wu
China Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wenliang Wu.
Science of The Total Environment | 2017
Xin Zhang; Roland Bol; Clive Rahn; Guangmin Xiao; Fanqiao Meng; Wenliang Wu
Global population increase will require rapid increase of food production from existing agricultural land by 2050, which will inevitably mean the increase of agricultural productivity. Due to agricultural sustainable intensification since the 1990s, crop production in Huantai County of northern China has risen to 15tha-1yr-1 for the annual wheat-maize rotation system. We examined the temporal dynamics of nitrogen (N) budget, N losses, and N use efficiency (NUE) during the 35years (1980-2014) in Huantai. The results revealed that atmospheric N deposition increased 220% while reactive N losses decreased by 21.5% from 1980s to 2010s. During 1980-2002, annual N partial factor productivity (PFPN), apparent NUE and N recovery efficiency (REN) increased from 20.3 to 40.7kggrainkg-1Nfert, from 36.5% to 71.0%, and from 32.4% to 57.7%, respectively; meanwhile, reactive N losses intensity, land use intensity and N use intensity decreased by 69.8%, 53.4%, 50.0%, respectively, but without further significant changes after 2002. Overall increases in NUE and decreases in N losses were largely due to the introduction of optimized fertilization practice, mechanization and increased incorporation of crop straw in Huantai. Straw incorporation was also significant in soil N stock accrual and fertility improvement. By 2030, northern China may reach the lowest end of PFPN values in developed countries (>45kggrainkg-1Nfert). These agricultural sustainable intensification practices will be critical in maintaining high grain yields and associated decreases in environmental pollution, although water use efficiency in the region still needs to be improved.
Journal of Environmental Management | 2017
Fanqiao Meng; Yuhui Qiao; Wenliang Wu; Pete Smith; Steffanie Scott
Organic agriculture has developed rapidly in China since the 1990s, driven by the increasing domestic and international demand for organic products. Quantification of the environmental benefits and production performances of organic agriculture on a national scale helps to develop sustainable high yielding agricultural production systems with minimum impacts on the environment. Data of organic production for 2013 were obtained from a national survey organized by the Certification and Accreditation Administration of China. Farming performance and environmental impact indicators were screened and indicator values were defined based on an intensive literature review and were validated by national statistics. The economic (monetary) values of farming inputs, crop production and individual environmental benefits were then quantified and integrated to compare the overall performances of organic vs. conventional agriculture. In 2013, organically managed farmland accounted for approximately 0.97% of national arable land, covering 1.158 million ha. If organic crop yields were assumed to be 10%-15% lower than conventional yields, the environmental benefits of organic agriculture (i.e., a decrease in nitrate leaching, an increase in farmland biodiversity, an increase in carbon sequestration and a decrease in greenhouse gas emissions) were valued at 1921 million RMB (320.2 million USD), or 1659 RMB (276.5 USD) per ha. By reducing the farming inputs, the costs saved was 3110 million RMB (518.3 million USD), or 2686 RMB (447.7 USD) per ha. The economic loss associated with the decrease in crop yields from organic agriculture was valued at 6115 million RMB (1019.2 million USD), or 5280 RMB (880 USD) per ha. Although they were likely underestimated because of the complex relationships among farming operations, ecosystems and humans, the production costs saved and environmental benefits of organic agriculture that were quantified in our study compensated substantially for the economic losses associated with the decrease in crop production. This suggests that payment for the environmental benefits of organic agriculture should be incorporated into public policies. Most of the environmental impacts of organic farming were related to N fluxes within agroecosystems, which is a call for the better management of N fertilizer in regions or countries with low levels of N-use efficiency. Issues such as higher external inputs and lack of integration cropping with animal husbandry should be addressed during the quantification of change of conventional to organic agriculture, and the quantification of this change is challenging.
Ecology and Evolution | 2017
Cong Xu; Xiao Han; Roland Bol; Pete Smith; Wenliang Wu; Fanqiao Meng
Abstract Requirements for mitigation of the continued increase in greenhouse gas (GHG) emissions are much needed for the North China Plain (NCP). We conducted a meta‐analysis of 76 published studies of 24 sites in the NCP to examine the effects of natural conditions and farming practices on GHG emissions in that region. We found that N2O was the main component of the area‐scaled total GHG balance, and the CH 4 contribution was <5%. Precipitation, temperature, soil pH, and texture had no significant impacts on annual GHG emissions, because of limited variation of these factors in the NCP. The N2O emissions increased exponentially with mineral fertilizer N application rate, with y = 0.2389e0.0058x for wheat season and y = 0.365e0.0071x for maize season. Emission factors were estimated at 0.37% for wheat and 0.90% for maize at conventional fertilizer N application rates. The agronomic optimal N rates (241 and 185 kg N ha−1 for wheat and maize, respectively) exhibited great potential for reducing N2O emissions, by 0.39 (29%) and 1.71 (56%) kg N2O‐N ha−1 season−1 for the wheat and maize seasons, respectively. Mixed application of organic manure with reduced mineral fertilizer N could reduce annual N2O emissions by 16% relative to mineral N application alone while maintaining a high crop yield. Compared with conventional tillage, no‐tillage significantly reduced N2O emissions by ~30% in the wheat season, whereas it increased those emissions by ~10% in the maize season. This may have resulted from the lower soil temperature in winter and increased soil moisture in summer under no‐tillage practice. Straw incorporation significantly increased annual N2O emissions, by 26% relative to straw removal. Our analysis indicates that these farming practices could be further tested to mitigate GHG emission and maintain high crop yields in the NCP.
Analytical Letters | 2018
Ting Hu; Liping Liu; Shaozhan Chen; Wenliang Wu; Changguo Xiang; Yanbin Guo
ABSTRACT The purpose of this work is to develop a high-efficiency extraction method for determining the selenium species in Cordyceps militaris. Six extraction solutions, including hot water, HCl, methanol–water, ammonium acetate, protease XIV, and protease K, combined with ultrasound-assisted extraction, were utilized in the measurements. The selenium species in the extracts were separated and characterized by high-performance liquid chromatography. Their concentrations were subsequently determined by hydride generation atomic fluorescence spectrometry. The 25 mM ammonium acetate was selected as the extraction solution due to its advantages in cost and efficiency. Validation was performed, and the selenium species recoveries were 69–97% for selenocystine, selenite, selenomethionine, and selenate with good linearity and precision. The major selenium species in C. militaris were selenocystine and selenomethionine that accounted for almost 73.1 ± 1.6% of the total selenium.
Frontiers in Plant Science | 2018
Ting Hu; Huafen Li; Jixiang Li; Guishen Zhao; Wenliang Wu; Liping Liu; Qi Wang; Yanbin Guo
Elemental selenium is one of the dominant selenium species in soil, but the mechanism of its uptake by plants is still unclear. In this study, nanoparticles of elemental selenium (SeNPs) with different sizes were prepared, and their uptake and transformation in wheat (Triticum aestivum L.) were analyzed in hydroponic experiments by HPLC-ICP-MS. We found that the SeNPs can be absorbed by wheat seedlings, and the process is energy independent. The addition of aquaporins inhibitor caused 92.5 and 93.4% inhibition of chemosynthesized SeNPs (CheSeNPs) and biosynthesized SeNPs (BioSeNPs) absorption by wheat roots, respectively. The 40 nm SeNPs uptake by wheat roots was 1.8-fold and 2.2-fold higher than that of 140 and 240 nm, respectively. The rate of SeNPs uptake in wheat was much slower than that of selenite [Se (IV)], and CheSeNPs were more efficiently absorbed than BioSeNPs. The SeNPs were rapidly oxidized to Se (IV) and converted to organic forms [selenocystine (SeCys2), se-methyl-selenocysteine (MeSeCys), and selenomethionine (SeMet)] after they were absorbed by wheat roots. Additionally, we demonstrated that the aquaporin function in some way is related to the absorption of SeNPs. The particle size and synthesis method of the SeNPs affected their uptake rates by plants. Taken together, our results provide a deep understanding of the SeNPs uptake mechanism in plants.
Ecosystem Health and Sustainability | 2018
Danyang Feng; Wenliang Wu; Long Liang; Li Li; Guishen Zhao
ABSTRACT Introduction: Payment for watershed ecosystem services (PWES), a policy instrument for compensating for the externality of watershed ecosystem/environmental services, has gained in policy importance in China over the past two decades. Many scholars and researchers have contributed to the conceptualization of this policy framework by developing operational mechanisms as well as compensation standards for PWES. Outcomes: This article reviews 27 PWES schemes piloted in China and in 10 other countries, with a particular emphasis on successful cases of land-use conversion programs, such as the Paddy Land to Dry Land Program and Sloping Land Conversion Program that have been implemented in China. Discussion: By comparing different cases, the authors attempt to answer the following questions: what were the ecological and institutional contexts in which these schemes were established and how did they work? What were the actual efficiencies and impacts of these piloted schemes? Which scheme worked better in certain ecological, socio- economic, and institutional contexts? Conclusion: Based on case studies, the authors draw the following conclusions about Chinese PWES: (1) to establish an acceptable standard for a PWES program, it is necessary to estimate the economic and social costs regarding the livelihoods of households; (2) multi-stakeholder negotiation mechanism for PWES, including intermediaries, such as the local government, NGO/NPOs, village committees, and user associations, should be used; (3) ES, non-market services, should acquire positive externalities to accomplish an optimal win–win pattern concerning both environmental goals and the livelihoods of local resource users.
Agriculture, Ecosystems & Environment | 2005
G.D. Liu; Wenliang Wu; J. Zhang
Renewable & Sustainable Energy Reviews | 2013
Long Liang; Wenliang Wu; Rattan Lal; Yanbin Guo
Biogeosciences | 2014
Y. Liao; Wenliang Wu; Fanqiao Meng; Pete Smith; Rattan Lal
Plant and Soil | 2013
Fanqiao Meng; Jennifer A. J. Dungait; Xuan Zhang; Minyi He; Yanbin Guo; Wenliang Wu